非常规油气沉积学:内涵与展望全文
Alternative TitleUnconventional Petroleum Sedimentology: Connotation and prospect全文
邱振1,2; 邹才能1,2,3
2020-02-10
Source Publication沉积学报
Volume38Issue:1Pages:1-29
Abstract随着非常规油气资源工业化勘探开发的快速发展,非常规油气地质学理论体系逐步建立,迫切需要创新构建非常规油气沉积学理论。通过简要概述非常规油气沉积学的基本内涵,提出“非常规油气沉积学”的概念,综述我国四川盆地页岩气、鄂尔多斯盆地致密油与页岩油等典型非常规油气层系沉积学研究进展,并展望非常规油气沉积学研究所面临的关键科学问题与挑战。研究指出非常规油气资源沉积富集与重大地质环境突变密切相关,是全球性或区域性构造与海(湖)平面升降、火山活动、气候突变、水体缺氧、生物灭绝与辐射、重力流等多种地质事件沉积耦合的结果。未来需要从地球系统科学出发,采用“非常规思想”,以地质事件分析思维深入开展非常规油气沉积学研究,为寻找非常规油气资源发挥重要作用。
Other AbstractThe theoretical framework of has been gradually established along with the rapid progresses in exploration and development of unconventional petroleum resources. It is now imperative for innovative new insights into the unconventional petroleum sedimentology. Herein, the concept and scientific connotations of “” are proposed and briefly introduced. The research progresses are summarized for the sedimentology of typical unconventional petroleum resources in China, such as Wufeng⁃Longmaxi Shale gas in Sichuan Basin and tight oil and shale oil of Yanchang Formation in Ordos Basin. Further research themes and challenges of are discussed. Sedimentary enrichment of unconventional petroleum resources can be closely related with some critical environmental changes, which would be the result of coupling sedimentology from several geological events such as global or regional tectonic activities, sea (lake) level changes, volcanic eruptions, climate changes, anoxic bottom water, biotic mass extinctions and radiations, and gravity currents. For better understanding of in future, the Earth Systems Science view and “unconventional” insights should be applied to its research by analyzing geological events in details, which can play an important role in the discovery of new unconventional petroleum resources.
Keyword沉积耦合 事件沉积 地质事件 页岩油气 致密油气 甜点区(段)
DOI10.14027/j.issn.1000-0550.2019.116
Language中文
References1 . Introduction to petroleum geology[M]. Bucks, UK: Scientific Press Ltd, 1975: 1-300.
2吴崇筠薛叔浩. 中国含油气盆地沉积学[M]. 北京:石油工业出版社,1993:1-484. . Sedimentology of petroliferous basins in China[M]. Beijing: Petroleum Industry Press, 1993: 1-484.
3 . Petroleum sedimentology[M]. Stuttgart, Germany: Springer, 1995: 1-400.
4刘宝珺. 中国沉积学的回顾和展望[J]. 矿物岩石,2001,21(3):1-7. . Sedimentology of China: A review and look forward[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 1-7.
5孙枢. 中国沉积学的今后发展:若干思考与建议[J]. 地学前缘,2005,12(2):3-10. . Sedimentology in China: Perspectives and suggestions[J]. Earth Science Frontiers, 2005, 12(2): 3-10.
6王成善郑和荣冉波等. 活动古地理重建的实践与思考:以青藏特提斯为例[J]. 沉积学报,2010,28(5):849-860. et al. On paleogeographic reonstruction: An example for application in Tibetan tethys[J]. Acta Sedimentologica Sinica, 2010, 28(5): 849-860.
7孙龙德方朝亮李峰等. 中国沉积盆地油气勘探开发实践与沉积学研究进展[J]. 石油勘探与开发,2010,37(4):385-396. et al. Petroleum exploration and development practices of sedimentary basins in China and research progress of sedimentology[J]. Petroleum Exploration and Development, 2010, 37(4): 385-396.
8邹才能. 非常规油气地质[M]. 北京:地质出版社,2011:1-310. . Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2011: 1-310.
9邹才能. 非常规油气地质学[M]. 北京:地质出版社,2014:1-463. . Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2014: 1-463.
10顾家裕张兴阳. 油气沉积学发展回顾和应用现状[J]. 沉积学报,2003,21(1):137-141. . Development review and current application of petroleum sedimentology[J]. Acta Sedimentologica Sinica, 2003, 21(1): 137-141.
11孙龙德方朝亮李峰等. 油气勘探开发中的沉积学创新与挑战[J]. 石油勘探与开发,2015,42(2):129-136. et al. Innovations and challenges of sedimentology in oil and gas exploration and development[J]. Petroleum Exploration and Development, 2015, 42(2): 129-136.
12朱如凯邹才能袁选俊等. 中国能源沉积学研究进展与发展战略思考[J]. 沉积学报,2017,35(5):1004-1015. et al. Research progress and development strategic thinking on energy sedimentology[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1004-1015.
13 . Resource-assessment perspectives for unconventional gas systems[J]. AAPG Bulletin, 2002, 86(11): 1993-1999.
14贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发,2017,44(1):1-11. . Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
15邹才能杨智张国生等. 非常规油气地质学建立及实践[J]. 地质学报,2019,93(1):12-23. et al. Establishment and practice of unconventional oil and gas geology[J]. Acta Geologica Sinica, 2019, 93(1): 12-23.
16邱振邹才能李建忠等. 非常规油气资源评价进展与未来展望[J]. 天然气地球科学,2013,24(2):238-246. et al. Unconventional petroleum resources assessment: Progress and future prospects[J]. Natural Gas Geoscience, 2013, 24(2): 238-246.
17邹才能杨智张国生等. 非常规油气概念、特征、潜力及技术:兼论非常规油气地质学[J]. 石油勘探与开发,2013,40(4):385-399,454. et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399, 454.
18邹才能董大忠王玉满等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689-701. et al. Shale gas in China: Characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
19邹才能丁云宏卢拥军等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发,2017,44(1):144-154. et al. Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154.
20 . Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2019, 10.1016/j.jseaes.2019.103989.
21姜在兴梁超吴靖等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039. et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
22陈世悦张顺王永诗等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发,2016,43(2):198-208. et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208.
23周立宏蒲秀刚邓远等. 细粒沉积岩研究中几个值得关注的问题[J]. 岩性油气藏,2016,28(1):6-15. et al. Several issues in studies on fine-grained sedimentary rocks[J]. Lithologic Reservoirs, 2016, 28(1): 6-15.
24王玉满王淑芳董大忠等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘,2016,23(1):119-133. et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119-133.
25赵建华金之钧金振奎等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586. et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586.
26蒋裕强宋益滔漆麟等. 中国海相页岩岩相精细划分及测井预测:以四川盆地南部威远地区龙马溪组为例[J]. 地学前缘,2016,23(1):107-118. et al. Fine lithofacies of China's marine shale and its logging prediction: A case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin, China[J]. Earth Science Frontiers, 2016, 23(1): 107-118.
27邹才能赵政璋杨华等. 陆相湖盆深水砂质碎屑流成因机制与分布特征:以鄂尔多斯盆地为例[J]. 沉积学报,2009,27(6):1065-1075. et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1065-1075.
28袁选俊林森虎刘群等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43. et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
29杜远生. 事件沉积学的历史、现状和展望[C]//第四届全国沉积学大会论文集. 青岛:中国地质学会,中国矿物岩石地球化学学会,2009:30-31. Historycurrent, prospect of event deposition[C]//Academic proceedings of the fourth national conference of sedimentology. Qingdao: Chinese Geological Society, Chinese Society of Mineralogy and Petrochemistry, 2009: 30-31.
30 . The North Pacific: An example of tectonics on a sphere[J]. Nature, 1967, 216(5122): 1276-1280.
31 . Sea-floor spreading and continental drift[J]. Journal of Geophysical Research, 1968, 73(12): 3661-3697.
32 . Rises, trenches, great faults, and crustal blocks[J]. Journal of Geophysical Research, 1968, 73(6): 1959-1982.
33 et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction[J]. Science, 1980, 208(4448): 1095-1108.
34 . Mass extinctions in the marine fossil record[J]. Science, 1982, 215(4539): 1501-1503.
35 . A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions[J]. Paleobiology, 1984, 10(2): 246-267.
36戎嘉余黄冰. 生物大灭绝研究三十年[J]. 中国科学(D辑):地球科学,2014,44(3):377-404. . Study of mass extinction over the past thirty years: A synopsis[J]. Science China (Seri. D): Earth Sciences, 2014, 44(3): 377-404.
37 . Deep mantle convection plumes and plate motions[J]. AAPG Bulletin, 1972, 56(2): 203-213.
38 . Supercontinents and superplume events: Distinguishing signals in the geologic record[J]. Physics of the Earth and Planetary Interiors, 2004, 146(1/2): 319-332.
39李献华李武显何斌. 华南陆块的形成与Rodinia超大陆聚合—裂解:观察、解释与检验[J]. 矿物岩石地球化学通报,2012,31(6):543-559. . Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 543-559.
40 et al. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes[J]. Precambrian Research, 2019, 323: 1-5.
41殷鸿福宋海军. 古、中生代之交生物大灭绝与泛大陆聚合[J]. 中国科学(D辑):地球科学,2013,43(10):1539-1552. . Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition[J]. Science China (Seri. D): Earth Sciences, 2013, 43(10): 1539-1552.
42沈树忠张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135. . What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135.
43 . Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 1-168.
44王清晨. 事件沉积学[J]. 地球科学进展,1991,6(3):90-91. . Advance of event deposition[J]. Advances in Earth Sciences, 1991, 6(3): 90-91.
45 . 50 years of the turbidite Paradigm (1950s—1990s): Deep-water processes and facies models—a critical perspective[J]. Marine and Petroleum Geology, 2000, 17(2): 285-342.
46何起祥. 沉积地球科学的历史回顾与展望[J]. 沉积学报,2003,21(1):10-18. . Sedimentary earth sciences: Yesterday, today and tomorrow[J]. Acta Sedimentologica Sinica, 2003, 21(1): 10-18.
47王成善. 白垩纪地球表层系统重大地质事件与温室气候变化研究:从重大地质事件探寻地球表层系统耦合[J]. 地球科学进展,2006,21(7):838-842. . Coupling of the earth surface system: Inferring from the Cretaceous major geological events[J]. Advances in Earth Science, 2006, 21(7): 838-842.
48胡修棉王成善. 白垩纪大洋红层:特征、分布与成因[J]. 高校地质学报,2007,13(1):1-13. . Cretaceous oceanic red beds: Characters, occurrences, and origin[J]. Geological Journal of China Universities, 2007, 13(1): 1-13.
49 . New insight into the evolution of large-volume turbidity currents: Comparison of turbidite shape and previous modelling results[J]. Sedimentology, 2007, 54(4): 737-769.
50 . Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
51 . Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake[J]. American Journal of Science, 1952, 250(12): 849-873.
52 . The origin and significance of the internal sedimentary structures of turbidites[J]. Proceedings of the Yorkshire Geological Society, 1965, 35(1): 1-32.
53 . Cyclic and event stratification[M]. New York: Springer, 1982: 1-536.
54 . Actualistic catastrophism address of the retiring president of the international association of sedimentologists[J]. Sedimentology, 1983, 30(1): 3-9.
55欧阳自远管云彬. 巨大撞击事件诱发古气候旋回的初步研究[J]. 科学通报,1992(9):829-831. . Preliminary study on paleoclimate cycle induced by huge collision[J]. Chinese Science Bulletin, 1992(9): 829-831.
56 . Tempestite deposition[J]. Journal of Sedimentary Research, 1996, 66(5): 875-887.
57龚一鸣. 风暴岩、震积岩、海啸岩:几个名词含义的商榷[J]. 地质论评,1988,34(5):481-482. . Tempestite, seismite, and tsunamite: A discussion of several sedimentological terms[J]. Geological Review, 1988, 34(5): 481-482.
58 . Studies of ventura field, California: Faies geometry and genesis of Lower Pliocene turbidites[J]. AAPG Bulletin, 1977, 61: 137-168.
59孙枢李继亮. 我国浊流与其他重力流沉积研究进展概况和发展方向问题刍议[J]. 沉积学报,1984,2(4):1-7. . Researches on turbidity and other gravity flow sedimentation in China[J]. Acta Sedimentologica Sinica, 1984, 2(4): 1-7.
60郑永飞. 新元古代雪球地球事件与地幔超柱活动[J]. 自然杂志,2005,27(1):28-32. . Neoproterozoic snowball earth event and mantle superplume activity[J]. Chinese Journal of Nature, 2005, 27(1): 28-32.
61 . Sedimentary geology and the future of paleoclimate studies[J]. The Sedimentary Record, 2013, 11(2): 4-10.
62 . Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite[J]. Geology, 2013, 41(5): 587-590.
63 . Mountain belts and the new global tectonics[J]. Journal of Geophysical Research, 1970, 75(14): 2625-2647.
64徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘,2002,9(4):341-353. . Mantle plumes, large igneous provinces and their geologic consequences[J]. Earth Science Frontiers, 2002, 9(4): 341-353.
65戎嘉余方宗杰. 生物大灭绝与复苏:来自华南古生代和三叠纪的证据[M]. 合肥:中国科学技术大学出版社,2004:1-1087. . Mass extinction and recovery-evidences from the Palaeozoic and Triassic of South China[M]. Heifei: University of Science and Technology of China Press, 2004: 1-1087.
66 et al. Calibrating the End-Permian mass extinction[J]. Science, 2011, 334(6061): 1367-1372.
67谢树成. 距今2.52亿年前后的生物地球化学循环与海洋生态系统崩溃:对现代海洋的启示[J]. 中国科学(D辑):地球科学,2018,48(12):1600-1605. . The shift of biogeochemical cycles indicative of the progressive marine ecosystem collapse across the Permian-Triassic boundary: An analog to modern oceans[J]. Science China (Seri. D): Earth Sciences, 2018, 48(12): 1600-1605.
68 . Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 1999, 48(4): 217-250.
69 et al. The phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
70 . A chronology of paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
71王成善胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘,2005,12(2):11-21. . Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11-21.
72 et al. Photic zone Euxinia during the Permian-Triassic superanoxic event[J]. Science, 2005, 307(5710): 706-709.
73胡修棉. 东特提斯洋晚中生代—古近纪重大事件研究进展[J]. 自然杂志,2015,37(2):93-102. . Overview of the Late Mesozoic Paleogene major paleoceanographic and geological events in eastern tethyan ocean[J]. Chinese Journal of Nature, 2015, 37(2): 93-102.
74 et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736.
75 et al. Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538.
76 . Phanerozoic environments of black shale deposition and the Wilson Cycle[J]. Solid Earth, 2012, 3(1): 29-42.
77 et al. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous[J]. Scientific Reports, 2018, 8: 4197.
78付金华邓秀芹张晓磊等. 鄂尔多斯盆地三叠系延长组深水砂岩与致密油的关系[J]. 古地理学报,2013,15(5):624-634. et al. Relationship between deepwater sandstone and tight oil of the Triassic Yanchang Formation in Ordos Basin[J]. Journal of Palaeogeography, 2013, 15(5): 624-634.
79邱振邹才能王红岩等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素探讨[J]. 天然气地球科学,2019,doi: 10.11764/j.issn.1672-1926.2019.11.003. et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi Shale gas in South China[J]. Natural Gas Geoscience, 2019, 10.11764/j.issn.1672-1926.2019.11.003.
80刘全有朱东亚孟庆强等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学(D辑):地球科学,2019,49(3):499-520. et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China (Seri. D): Earth Sciences, 2019, 49(3): 499-520.
81王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质,2015,36(1):1-6. . Breakthrough of fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1): 1-6.
82郭旭升胡东风魏志红等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探,2016,21(3):24-37. et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37.
83马永生蔡勋育赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发,2018,45(4):561-574. . China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.
84马新华谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发,2018,45(1):161-169. . The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169.
85郑述权谢祥锋罗良仪等. 四川盆地深层页岩气水平井优快钻井技术:以泸203井为例[J]. 天然气工业,2019,39(7):88-93. et al. Fast and efficient drilling technologies for deep shale gas horizontal wells in the Sichuan Basin: A case study of well Lu 203[J]. Natural Gas Industry, 2019, 39(7): 88-93.
86胡伟光李发贵范春华等. 四川盆地海相深层页岩气储层预测与评价:以丁山地区为例[J]. 天然气勘探与开发,2019,42(3):66-77. et al. Prediction and evaluation on deeper marine shale-gas reservoirs, Dingshan area, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(3): 66-77.
87金之钧胡宗全高波等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10. et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
88何治亮聂海宽张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘,2016,23(2):8-17. . The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17.
89翟刚毅王玉芳包书景等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学,2017,42(7):1057-1068. et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068.
90 . A facies analysis of upper Ordovician regressive sequences in the Oslo region, Norway: A record of glacio-eustatic changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1980, 31: 1-38.
91 et al. Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit[J]. Geology, 2000, 28(11): 967-970.
92 et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry[J]. Science, 2008, 321(5888): 550-554.
93 et al. 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34): 14983-14986.
94 et al. The magnitude and duration of Late Ordovician-Early Silurian glaciation[J]. Science, 2011, 331(6019): 903-906.
95 . Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras[J]. Quaternary International, 2008, 178(1): 276-287.
96 et al. Volcanic activities triggered the first global cooling event in the Phanerozoic[J]. Journal of Asian Earth Sciences, 2019, 10.1016/j.jseaes.2019.104074.
97 et al. A sulfidic driver for the End-Ordovician mass extinction[J]. Earth and Planetary Science Letters, 2012, 331-332: 128-139.
98 et al. Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 1-11.
99 et al. Abrupt global-ocean anoxia during the Late Ordovician-Early Silurian detected using uranium isotopes of marine carbonates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 5896-5901.
100 et al. Sulfate-controlled marine euxinia in the semi-restricted inner Yangtze Sea (South China) during the Ordovician-Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109281.
101 . End ordovician extinctions: A coincidence of causes[J]. Gondwana Research, 2014, 25(4): 1294-1307.
102 et al. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana[J]. Gondwana Research, 2009, 15(1): 111-130.
103戎嘉余陈旭王怿等. 奥陶—志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学(D辑):地球科学,2011,41(10):1407-1415. et al. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition: Evidence and implications[J]. Science China (Seri. D): Earth Sciences, 2011, 41(10): 1407-1415.
104戎嘉余王怿詹仁斌等. 中国志留纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):93-114. et al. Silurian integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 93-114.
105戎嘉余黄冰. Manosia [J]. 地质学报,2019,93(3):509-527. . Manosia[J]. Acta Geologica Sinica, 2019, 93(3): 509-527.
106陈旭樊隽轩陈清等. 论广西运动的阶段性[J]. 中国科学(D辑):地球科学,2014,44(5):842-850. et al. Toward a stepwise Kwangsian Orogeny[J]. Science China (Seri. D): Earth Sciences, 2014, 44(5): 842-850.
107卢斌邱振周杰等. 四川盆地及周缘五峰组—龙马溪组钾质斑脱岩特征及其地质意义[J]. 地质科学,2017,52(1):186-202. et al. The characteristics and geological significance of the K-bentonite in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Chinese Journal of Geology, 2017, 52(1): 186-202.
108徐亚军杜远生. 从板缘碰撞到陆内造山:华南东南缘早古生代造山作用演化[J]. 地球科学,2018,43(2):333-353. . From periphery collision to intraplate orogeny: Early Paleozoic orogenesis in southeastern part of South China[J]. Earth Science, 2018, 43(2): 333-353.
109张元动詹仁斌甄勇毅等. 中国奥陶纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):66-92. et al. Ordovician integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 66-92.
110王玉满李新景王皓等. 四川盆地东部上奥陶统五峰组—下志留统龙马溪组斑脱岩发育特征及地质意义[J]. 石油勘探与开发,2019,46(4):653-665. et al. Developmental characteristics and geological significance of the bentonite in the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(4): 653-665.
111邱振卢斌陈振宏等. 火山灰沉积与页岩有机质富集关系探讨:以五峰组—龙马溪组含气页岩为例[J]. 沉积学报,2019,37(6):1296-1308. et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1296-1308.
112 . Gondwana paleogeography from assembly to breakup—A 500 m. y. odyssey[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. Boulder, Colorado: Geological Society of America, 2008: 1-28.
113 . The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29.
114 . Gondwana from top to base in space and time[J]. Gondwana Research, 2013, 24(3/4): 999-1030.
115舒良树. 华南构造演化的基本特征[J]. 地质通报,2012,31(7):1035-1053. . An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053.
116马永生陈洪德王国力. 中国南方层序地层与古地理[M]. 北京:科学出版社,2009:303-312. . Sequence and palaeogeography in South China[M]. Beijing: Science Press, 2009: 303-312.
117 et al. A Late Ordovician (Hirnantian) karstic surface in a submarine channel, recording glacio-eustatic sea-level changes: Meifod, central Wales[J]. Geological Journal, 2006, 41(1): 1-22.
118 et al. The Late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession: The Bou Ingarf section (Anti-Atlas, southern Morocco)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(3/4): 332-358.
119 . Climate modes of the Phanerozoic[M]. New York: Cambridge University Press, 1992: 1-274.
120 et al. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period[J]. Geology, 1994, 22(4): 295-298.
121 . 22[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5653-5664.
122 et al. A Cenozoic-style scenario for the End-Ordovician glaciation[J]. Nature Communications, 2014, 5: 4485.
123 . The End-Ordovician mass extinction: A single-pulse event?[J]. Earth-Science Reviews, 2019, 192: 15-33.
124 et al. The greatest volcanic ash falls in the phanerozoic: Trans-atlantic relations of the Ordovician millbrig and kinnekulle k-bentonites[J]. The Sedimentary Record, 2004, 2: 4-8.
125 et al. Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China[J]. Earth and Planetary Science Letters, 2019, 518: 13-25.
126 et al. Predominance of stratified anoxic Yangtze Sea interrupted by short–term oxygenation during the Ordo–Silurian transition[J]. Chemical Geology, 2012, 291: 69-78.
127 et al. Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation[J]. Nature Geoscience, 2018, 11(7): 510-514.
128 . A global synthesis of the Latest Ordovician Hirnantian brachiopod faunas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1988, 79(4): 383-402.
129 . Disentangling the record of diagenesis, local redox conditions, and global seawater chemistry during the Latest Ordovician glaciation[J]. Earth and Planetary Science Letters, 2017, 459: 145-156.
130 et al. The global boundary stratotype section and point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System)[J]. Episodes, 2006, 29(3): 183-196.
131 et al. Large-scale climatic fluctuations in the Latest Ordovician on the Yangtze Block, South China[J]. Geology, 2010, 38(7): 599-602.
132 et al. Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction[J]. Scientific Reports, 2017, 7: 5304, 10.1038/s41598-017-05524-5.
133 et al. A volcanic trigger for the Late ordovician mass extinction? Mercury data from South China and laurentia[J]. Geology, 2017, 45(7): 631-634.
134谢军鲜成钢吴建发等. 长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识[J]. 中国石油勘探,2019,24(2):174-185. et al. Optimal key elements of geoengineering integration in Changning National Shale Gas Demonstration Zone[J]. China Petroleum Exploration, 2019, 24(2): 174-185.
135贾爱林位云生刘成等. 页岩气压裂水平井控压生产动态预测模型及其应用[J]. 天然气工业,2019,39(6):71-80. et al. A dynamic prediction model of pressure control production performance of shale gas fractured horizontal wells and its application[J]. Natural Gas Industry, 2019, 39(6): 71-80.
136梁兴徐进宾刘成等. 昭通国家级页岩气示范区水平井地质工程一体化导向技术应用[J]. 中国石油勘探,2019,24(2):226-232. et al. Geosteering technology based on geological and engineering integration for horizontal wells in Zhaotong National Shale Gas Demonstration Zone[J]. China Petroleum Exploration, 2019, 24(2): 226-232.
137邱振董大忠卢斌等. 中国南方五峰组—龙马溪组页岩中笔石与有机质富集关系探讨[J]. 沉积学报,2016,34(6):1011-1020. et al. Discussion on the relationship between graptolite abundance and organic enrichment in shales from the Wufeng and Longmaxi Formation, South China[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1011-1020.
138 et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3/4): 353-372.
139李双建沃玉进周雁等. 影响高演化泥岩盖层封闭性的主控因素分析[J]. 地质学报,2011,85(10):1691-1697. et al. Controlling factors affect sealing capability of well-developed muddy cap rock[J]. Acta Geologica Sinica, 2011, 85(10): 1691-1697.
140陈旭樊隽轩张元动等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志,2015,39(4):351-358. et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358.
141邱振邹才能李熙喆等. 论笔石对页岩气源储的贡献:以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学,2018,29(5):606-615. et al. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: A case study of the Wufeng-Longmaxi Formations in South China[J]. Natural Gas Geoscience, 2018, 29(5): 606-615.
142 et al. Shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 182-196.
143付金华郭正权邓秀芹. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J]. 古地理学报,2005,7(1):34-44. . Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin[J]. Journal of Palaeogeography, 2005, 7(1): 34-44.
144杨华邓秀芹. 构造事件对鄂尔多斯盆地延长组深水砂岩沉积的影响[J]. 石油勘探与开发,2013,40(5):513-520. . Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(5): 513-520.
145杨华李士祥刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报,2013,34(1):1-11. . Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11.
146朱如凯邹才能吴松涛等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184. et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184.
147邱振卢斌施振生等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油滞留聚集机理及资源潜力探讨[J]. 天然气地球科学,2016,27(10):1817-1827,1847. et al. Residual accumulation and resource assessment of shale oil from the Permian Lucaogou Formation in Jimusar Sag[J]. Natural Gas Geoscience, 2016, 27(10): 1817-1827, 1847.
148杨智邹才能. “进源找油”:源岩油气内涵与前景[J]. 石油勘探与开发,2019,46(1):173-184. . “Exploring petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 173-184.
149金之钧白振瑞高波等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):451-458. et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458.
150付金华牛小兵淡卫东等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601-614. et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614.
151杜金虎胡素云庞正炼等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探,2019,24(5):560-568. et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568.
152周庆凡杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质,2012,33(4):541-544,570. . Definition and application of tight oil and shale oil terms[J]. Oil & Gas Geology, 2012, 33(4): 541-544, 570.
153姚泾利邓秀琴赵彦德等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发,2013,40(2):150-158. et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158.
154杨华牛小兵罗顺社等. 鄂尔多斯盆地陇东地区长7段致密砂体重力流沉积模拟实验研究[J]. 地学前缘,2015,22(3):322-332. et al. Research of simulated experiment on gravity flow deposits of tight sand bodies of Chang 7 Formation in Longdong area, Ordos Basin[J]. Earth Science Frontiers, 2015, 22(3): 322-332.
155孙宁亮钟建华田东恩等. 鄂尔多斯盆地南部延长组事件沉积与致密油的关系[J]. 中国石油大学学报(自然科学版),2017,41(6):30-40. et al. Relationship between event deposits and tight oil of Yanchang Formation in southern Ordos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(6): 30-40.
156 et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
157 et al. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, central China[J]. Sedimentary Geology, 2012, 265-266: 143-155.
158杨华牛小兵徐黎明等. 鄂尔多斯盆地三叠系长7段页岩油勘探潜力[J]. 石油勘探与开发,2016,43(4):511-520. et al. Exploration potential of shale oil in Chang7 member, Upper Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 511-520.
159杨华梁晓伟牛小兵等. 陆相致密油形成地质条件及富集主控因素:以鄂尔多斯盆地三叠系延长组7段为例[J]. 石油勘探与开发,2017,44(1):12-20. et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: A case of Chang 7 member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 12-20.
160姚泾利赵彦德邓秀芹等. 鄂尔多斯盆地延长组致密油成藏控制因素[J]. 吉林大学学报(地球科学版),2015,45(4):983-992. et al. Controlling factors of tight oil reservior in Triassic Yanchang Formation in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 983-992.
161邱振李建忠吴晓智等. 国内外致密油勘探现状、主要地质特征及差异[J]. 岩性油气藏,2015,27(4):119-126. et al. Exploration status, main geologic characteristics and their differences of tight oil between America and China[J]. Lithologic Reservoirs, 2015, 27(4): 119-126.
162姜星于建青史飞等. 鄂尔多斯盆地子北地区长6段油藏成藏条件及主控因素[J]. 地球科学与环境学报,2014,36(4):64-76. et al. Hydrocarbon accumulation condition and main controlling factors of Chang-6 reservoir in Zibei area of Ordos Basin[J]. Journal of Earth Sciences and Environment, 2014, 36(4): 64-76.
163张国伟程顺有郭安林等. 秦岭—大别中央造山系南缘勉略古缝合带的再认识:兼论中国大陆主体的拼合[J]. 地质通报,2004,23(9/10):846-853. et al. Mianlue paleo-suture on the southern margin of the central orogenic system in Qinling-Dabie with a discussion of the assembly of the main part of the continent of China[J]. Geological Bulletin of China, 2004, 23(9/10): 846-853.
164陈全红李文厚郭艳琴等. 鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义[J]. 地质学报,2006,80(5):656-663. et al. Turbidite systems and the significance of petroleum exploration of Yanchang Formation in the southern Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 656-663.
165 et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.
166张文正杨华彭平安等. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J]. 地球化学,2009,38(6):573-582. et al. The influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J]. Geochimica, 2009, 38(6): 573-582.
167陈安清陈红德侯明才等. 鄂尔多斯盆地中—晚三叠世事件沉积对印支运动Ⅰ幕的指示[J]. 地质学报,2011,85(10):1681-1690. et al. The Middle-Late Triassic event sediments in Ordos Basin: Indicators for episode I of the indosinian movement[J]. Acta Geologica Sinica, 2011, 85(10): 1681-1690.
168邓秀琴蔺昉晓刘显阳等. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J]. 古地理学报,2008,10(2):159-166. et al. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(2): 159-166.
169邱欣卫刘池阳李元昊等. 鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义[J]. 沉积学报,2009,27(6):1138-1146. et al. Distribution characteristics and geological significances of tuff interlayers in Yanchang Formation of Ordos Basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1138-1146.
170 et al. High-precision dating and geological significance of Chang 7 tuff zircon of the Triassic Yanchang Formation, Ordos Basin in central China[J]. Acta Geologica Sinica, 2019, 93(6): 1823-1834, 10.1111/1755-6724.14329.
171 . Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China[J]. International Journal of Coal Geology, 2017, 183: 38-51.
172付金华李士祥徐黎明等. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J]. 石油勘探与开发,2018,45(6):936-946. et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 936-946.
173李森朱如凯崔景伟等. 古环境与有机质富集控制因素研究:以鄂尔多斯盆地南缘长7油层组为例[J]. 岩性油气藏,2019,31(1):87-95. et al. Paleoenvironment and controlling factors of organic matter enrichment: A case of Chang 7 oil reservoir in southern margin of Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(1): 87-95.
174傅强吕苗苗刘永斗. 鄂尔多斯盆地晚三叠世湖盆浊积岩发育特征及地质意义[J]. 沉积学报,2008,26(2):186-192. . Developmental characteristics of turbidite and its implication on petroleum geology in Late-Triassic Ordos Basin[J]. Acta Sedimentologica Sinica, 2008, 26(2): 186-192.
175 . Tectonic evolution of a composite collision orogen: An overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428.
176刘池洋赵红格桂小军等. 王建强. 鄂尔多斯盆地演化—改造的时空坐标及其成藏(矿)响应[J]. 地质学报,2006,80(5):617-638. et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638.
177邓胜徽卢远征罗忠等. 鄂尔多斯盆地延长组的划分、时代及中—上三叠统界线[J]. 中国科学(D辑):地球科学,2018,48(10):1293-1311. et al. Subdivision and age of the Yanchang Formation and the Middle/Upper Triassic boundary in Ordos Basin, North China[J]. Science China (Seri. D): Earth Sciences, 2018, 48(10): 1293-1311.
178王多云辛补社杨华等. 鄂尔多斯盆地延长组长7底部凝灰岩锆石SHRIMP U-Pb年龄及地质意义[J]. 中国科学(D辑):地球科学,2014,44(10):2160-2171. et al. Zircon SHRIMP U-Pb age and geological implications of tuff at the bottom of Chang-7 member of Yanchang Formation in the Ordos Basin[J]. Science China (Seri. D): Earth Sciences, 2014, 44(10): 2160-2171.
179张文李玉宏张乔等. 3[J]. 地球科学,2017,42(9):1565-1577. et al. 3[J]. Earth Science, 2017, 42(9): 1565-1577.
180贺聪吉利明苏奥等. 鄂尔多斯盆地南部延长组热水沉积作用与烃源岩发育的关系[J]. 地学前缘,2017,24(6):277-285. et al. Relationship between hydrothermal sedimentation process and source rock development in the Yanchang Formation in southern Ordos Basin[J]. Earth Science Frontiers, 2017, 24(6): 277-285.
181张文正杨华解丽琴等. 湖底热水活动及其对优质烃源岩发育的影响:以鄂尔多斯盆地长7烃源岩为例[J]. 石油勘探与开发,2010,37(4):424-429. et al. Lake-bottom hydrothermal activities and their influences on the high-quality source rock development: A case from Chang 7 source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 37(4): 424-429.
182宋世骏柳益群郑庆华等. 3[J]. 沉积学报,2019,37(6):1117-1128. et al. 3[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1117-1128.
183 et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China[J]. Journal of Asian Earth Sciences, 2012, 39(4): 285-293.
184刘群袁选俊林森虎等. 湖相泥岩、页岩的沉积环境和特征对比:以鄂尔多斯盆地延长组7段为例[J]. 石油与天然气地质,2018,39(3):531-540. et al. Depositional environment and characteristic comparison between lacustrine mudstone and shale: A case study from the Chang 7 member of the Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(3): 531-540.
185 et al. Reconstruction of redox conditions during deposition of organic-rich shales of the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 158-170.
186 . Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466.
187 et al. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic Basin during the Late Cenomanian oceanic anoxic event[J]. Paleoceanography, 2002, 17(4): 1051, 10.1029/2000PA000569.
188李相博刘化清潘树新等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报,2019,37(5):904-921. et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921.
189李文厚邵磊魏红红等. 西北地区湖相浊流沉积[J]. 西北大学学报(自然科学版),2001,31(1):57-62. et al. Turbidity current deposits of lake facies in northwestern China[J]. Journal of Northwest University (Natural Science Edition), 2001, 31(1): 57-62.
190赵俊兴李凤杰申晓莉等. 鄂尔多斯盆地南部长6和长7油层浊流事件的沉积特征及发育模式[J]. 石油学报,2008,29(3):389-394. et al. Sedimentary characteristics and development pattern of turbidity event of Chang 6 and Chang 7 oil reservoirs in the southern Ordos Basin[J]. Acta Petrolei Sinica, 2008, 29(3): 389-394.
191邹才能赵文智张兴阳等. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布[J]. 地质学报,2008,82(6):813-825. et al. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins[J]. Acta Geologica Sinica, 2008, 82(6): 813-825.
192杨仁超金之钧孙冬胜等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报,2015,33(1):10-20. et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.
193 et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
194 . Submarine transitional flow deposits in the Paleogene Gulf of Mexico[J]. Geology, 2012, 40(12): 1119-1122.
195杨仁超尹伟樊爱萍等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义[J]. 古地理学报,2017,19(5):791-806. et al. Fine-grained, lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(5): 791-806.
196 et al. A Late Triassic gravity flow depositional system in the southern Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41(6): 724-733.
197 et al. An upward shallowing succession of gravity flow deposits in the Early Cretaceous Lingshandao Formation, western Yellow Sea[J]. Acta Geologica Sinica, 2016, 90(4): 1553-1554.
198 et al. Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin, central China[J]. Marine and Petroleum Geology, 2017, 85: 194-219.
199邹才能朱如凯吴松涛等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187. et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
200匡立春唐勇雷德文等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发,2012,39(6):657-667. et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667.
201孙宁亮钟建华刘绍光等. 鄂尔多斯盆地南部延长组重力流致密储层成岩作用及物性演化[J]. 地球科学,2017,42(10):1802-1816. et al. Diagenesis and physical property evolution of gravity flow tight reservoir of Yanchang Formation in southern Ordos basin[J]. Earth Science, 2017, 42(10): 1802-1816.
202卢双舫黄文彪陈方文等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发,2012,39(2):249-256. et al. Classification and evaluation criteria of shale oil and gas resources: Discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-256.
203王民. 济阳坳陷沙河街组湖相页岩吸附油、游离油控制因素研究[C]//第十七届全国有机地球化学学术会议. 福州,2019:667-668. . Controlling factors of adsorbed oil and free oil in lacustrine shale of the Shahejie Formation in the Jiyang Depression[C]//Proceedings of the 17th national meeting on organic geochemistry. Fuzhou, 2019: 667-668.
204杨华张文正. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J]. 地球化学,2005,34(2):147-154. . Leading effect of the seventh member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Geology and geochemistry[J]. Geochimica, 2005, 34(2): 147-154.
205冉波刘树根孙玮等. 四川盆地及周缘下古生界五峰组—龙马溪组页岩岩相分类[J]. 地学前缘,2016,23(2):96-107. et al. Lithofacies classification of shales of the Lower Paleozoic Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science Frontiers, 2016, 23(2): 96-107.
206 et al. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints[J]. Chemical Geology, 2009, 258(3/4): 168-181.
207 . Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites[J]. Precambrian Research, 2014, 248: 1-16.
208 et al. Mineralogical control on the fate of continentally derived organic matter in the ocean[J]. Science, 2019, 366(6466): 742-745.
209 et al. A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian sea[J]. Quaternary Research, 1999, 51(1): 39-53.
210王冠民钟建华. 湖泊纹层的沉积机理研究评述与展望[J]. 岩石矿物学杂志,2004,23(1):43-48. . A review and the prospects of the researches on sedimentary mechanism of lacustrine laminae[J]. Acta Petrologica et Mineralogica, 2004, 23(1): 43-48.
211葸克来操应长朱如凯等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报,2015,36(12):1495-1507. et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1495-1507.
212吴松涛邹才能朱如凯等. 鄂尔多斯盆地上三叠统长7段泥页岩储集性能[J]. 地球科学——中国地质大学学报,2015,40(11):1810-1823. et al. Reservoir quality characterization of Upper Triassic Chang 7 shale in Ordos Basin[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(11): 1810-1823.
213吴嘉鹏王英民王海荣等. 深水重力流与底流交互作用研究进展[J]. 地质论评,2012,58(6):1110-1120. et al. The interaction between deep-water turbidity and bottom currents: A review[J]. Geological Review, 2012, 58(6): 1110-1120.
214潘树新陈彬滔刘华清等. 陆相湖盆深水底流改造砂:沉积特征、成因及其非常规油气勘探意义[J]. 天然气地球科学,2014,25(10):1577-1585. et al. Deepwater bottom current rework sand (BCRS) in lacustrine basins: Sedimentary characteristics, identification criterion, formation mechanism and its significance for unconventional oil/gas exploration[J]. Natural Gas Geoscience, 2014, 25(10): 1577-1585.
215刘长利朱筱敏胡有山等. 地震沉积学在识别陆相湖泊浊积砂体中的应用[J]. 吉林大学学报(地球科学版),2011,41(3):657-664. et al. Application of seismic sedimentology on lacustrine turbidite deposition indetification[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3): 657-664.
216 . On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34.
217王成善曹珂黄永建. 沉积记录与白垩纪地球表层系统变化[J]. 地学前缘,2009,16(5):1-14. . Sedimentary record and Cretaceous Earth Surface System changes[J]. Earth Science Frontiers, 2009, 16(5): 1-14.
Citation statistics
Document Type期刊论文
Identifierhttp://119.78.100.147:8080/handle/2SELTVKS/79666
Collection骨干期刊_沉积学报
Affiliation1.石油勘探开发研究院,北京 100083
2.能源页岩气研发(实验)中心,河北 廊坊 065007
3.能源致密油气研发中心,北京 100083
Recommended Citation
GB/T 7714
邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.
APA 邱振,&邹才能.(2020).非常规油气沉积学:内涵与展望.沉积学报,38(1),1-29.
MLA 邱振,et al."非常规油气沉积学:内涵与展望".沉积学报 38.1(2020):1-29.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[邱振]'s Articles
[邹才能]'s Articles
Baidu academic
Similar articles in Baidu academic
[邱振]'s Articles
[邹才能]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[邱振]'s Articles
[邹才能]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.