水系结构分形特征的研究进展全文
Alternative TitleRecent Advances in Fractal Characteristics of River Network Structure全文
孟宪萌1; 张鹏举1; 周宏2; 刘登峰3
2019-01-10
Volume34Issue:1Pages:48-56
Abstract水系结构对流域调洪蓄水能力、区域景观格局、洪水径流过程和城市管网水网建设等有着重要的影响,定量描述水系结构特征是认识其结构变化规律的前提和基础。由于水系结构无特征尺度,使得分形理论在定量刻画其结构特征中得到广泛应用。通过归纳整理近年来国内外有关分形理论在水系结构特征方面的研究成果,对分形理论的发展进行了梳理,重点归纳总结有关水系分形结构的主要研究内容:水系分形模型的建立及特征参数的计算、水系分维影响因素的探究、水系分维的应用研究。针对3个主要内容分别进行了评述和探讨,指出分形理论在水系结构研究方面仍有广阔的应用研究价值和拓展空间,建立统一的水系分维数计算标准、开展多标度多影响因素下的水系分维研究,以及揭示水系分维数与相关物理现象中蕴含规律之间的关系将是未来的发展方向。
Other AbstractThe river network structure has a significant influence on the flood regulation and water storage capacity of watershed, landscape pattern in watershed, flood and runoff processes, and the construction of pipeline network for water supply and drainage. Quantitative description methods for the river network structure are the premise and basis for a deep understanding of its changing rules. As there is no characteristic scale in the river network, fractal theory is widely used in the description of the characteristics of river network structure. This paper summarized the current advancement in fractal characteristics of river network structure in three aspects: Establishment of fractal model for the description of river network structure and calculation of its parameters; Analysis of factors influencing the fractal dimension of river networks; Application of the fractal dimension of river networks. Based on the review and discussion from the three aspects, it is pointed out that the fractal approach is a theoretically attractive and potentially very effective framework in quantitative description and analysis of the river network structure. And the future direction is to propose a unified computation method for the fractal dimension, interpret multi-fractal characteristics of the river network structure, analyze the different influencing factors on the fractal dimension and reveal the relationship between the fractal dimension and the complicated regularities contained in physical phenomena.
Keyword水系 自相似 分形 分维数 影响因素
DOI10.11867/j.issn.1001-8166.2019.1.0048
References1. Simplicity, complexity and mathematical modeling of geographical distributions[J]. Progress in Geography, 2015, 34 (3): 321-329.陈彦光. 简单、复杂与地理分布模型的选择[J]. 地理科学进展, 2015, 34(3): 321-329.
2. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967, 156(3 775): 636-638.
3. On the fractal dimension of stream networks[J]. Water Resources Research, 1989, 25(4): 735-741.
4. The preliminary study on the fractal dimension of the flow hydrograph and basin configuration in Jialing River[J]. Journal of Chengdu University of Science and Technology, 1995, 82(1): 74-80.傅军丁晶邓育仁. 嘉陵江流域形态及流量过程分维研究[J]. 成都科技大学学报, 1995, 82(1): 74-80.
5. Several issues on fractal theory application to geomorphology[J]. Journal of Seismological Reserch, 2002, 25(2): 155-162.李锰朱令人龙海英. 分形在地貌学中应用的几个问题的分析[J]. 地震研究, 2002, 25(2): 155-162.
6. Introducing Fractals: A Graphic Guide[M]. London: Icon Books, 2009.
7. Statistical self-similarity in river networks parameterized by elevation[J]. Water Resources Research, 1989, 25(3): 463-476.
8. Fractal Characteristics and Self-organization of Sediment Movement and Bed Evolution[D]. Chengdu: Sichuan University, 1999.汪富泉. 泥沙运动及河床演变的分形特征与自组织规律研究[D]. 成都: 四川大学, 1999.
9. Fractals and fractal dimensions of structure of river systems: Models reconstruction and parameters interpretation of Horton’s laws of network composition[J]. Advances in Earth Science, 2001, 16(2): 178-183.陈彦光刘继生. 水系结构的分形和分维——Horton水系定律的模型重建及其参数分析[J]. 地球科学进展, 2001, 16(2): 178-183.
10. On box dimensions of river basins of China[J]. Advances in Water Science, 2003, 14(6): 731-735.朱晓华蔡运龙. 中国水系的盒维数及其关系[J]. 水科学进展, 2003, 14(6): 731-735.
11. Fractal dimension of the hydrographic pattern of three large rivers in the Mediterranean Morphoclimatic System: Geomorphologic Interpretation of Russian (USA), Ebro (Spain) and Volturno (Italy) Fluvial Geometry[J]. Pure and Applied Geophysics, 2015, 172(7):1 975-1 984.
12. A Theoretical Framework for Understanding River Networks: Connecting Process, Geometry and Topology Across Many Scales[D].Boulder: University of Colorado at Boulder, 1999.
13. Comparative study on fractal dimensions of river basins in China at different map scales[J]. Scientia Geographica Sinica, 2006, 26(4): 461-465.何钢蔡运龙. 不同比例尺下中国水系分维数关系研究[J]. 地理科学, 2006, 26(4): 461-465.
14. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology[J]. Journal of the Japanese Forestry Society, 1945, 56(3): 275-370.
15. A study of fractals in geoscience: drainages, earthquakes and others[J]. Exploration of Nature, 1988, 24(7): 33-40.洪时中洪时明. 地学领域中的分维研究水系、地震及其它[J]. 大自然探索, 1988, 24(7): 33-40.
16. Physical phenomena[J]. Geographical Magazine, 1992, (7): 35-36.
17et al. Stream structure characteristics and its urbanization responses to tidal river system[J]. Acta Geographica Sinica, 2004, 59(4): 557-564.杨凯袁雯赵军等. 感潮河网地区水系结构特征及城市化响应[J]. 地理学报, 2004, 59(4): 557-564.
18. Fractal models of fractal geomorphology and geomorphological development[J]. Chinese Journal of Nature, 1992, 15(7): 516-519.李后强艾南山. 分形地貌学及地貌发育的分形模型[J]. 自然杂志, 1992, 15(7): 516-519.
19. Horton law in self-similar trees[J]. Fractals-complex Geometry Patterns and Scaling in Nature and Society, 2016, 24(2): 1650017.
20. New Findings on river network organization: Law of eigenarea and relationships among Hortonian scaling ratios[J]. Fractals-complex Geometry Patterns and Scaling in Nature and Society, 2017, 25(3): 1750029.
21. Quantitative analysis of watershed geomorphology[J]. Eos Transactions American Geophysical Union, 1957, 38(6): 913-920.
22. Fractal relation of mainstream length to catchment-area in river networks [J]. Water Resources Research, 1991, 27(3): 381-387.
23et al. Horton law and fractal nature of branch networks[J]. Advances in Water Science, 1998, 9(2): 118-123.罗文锋李后强丁晶等. Horton定律及分枝网络结构的分形描述[J]. 水科学进展, 1998, 9(2): 118-123.
24. Studies of the fractal network composition of rivers in Jilin Province, China[J]. Advances in Earth Science, 2003, 18(2): 178-184.陈彦光李宝林. 吉林省水系构成的分形研究[J]. 地球科学进展, 2003, 18(2): 178-184.
25et al. Temporal-spatial evolution of stream construction and its driving forces in Manas River basin during 1958-2006[J]. Progress in Geography, 2010, 29(9): 1 129-1 136.凌红波徐海量乔木等. 1958—2006年玛纳斯河流域水系结构时空演变及驱动机制分析[J]. 地理科学进展, 2010, 29(9): 1 129-1 136.
26et al. Statistical features of the drainage network in the Qinghai-Tibet Plateau and the effect of the uplift[J]. Journal of Tsinghua University (Science & Technology), 2015, 55(9): 964-970.刘乐王兆印余国安等. 青藏高原河网统计规律及高原抬升的影响[J]. 清华大学学报:自然科学版, 2015, 55(9): 964-970.
27. Morphological feature and distribution of typical river networks[J]. Journal of Hydraulic Engineering, 2007, 38(11): 1 354-1 357.刘怀湘王兆印. 典型河网形态特征与分布[J]. 水利学报, 2007, 38(11): 1 354-1 357.
28. Relationship between river network pattern and environmental condition[J]. Journal of Tsinghua University(Science & Technology), 2008, 48(9): 1 408-1 412.刘怀湘王兆印. 河网形态与环境条件的关系[J]. 清华大学学报:自然科学版, 2008, 48(9): 1 408-1 412.
29. The Fractal Geometry of Nature[M]. New York:Times Books, 1982.
30. Study on calculating methods of watershed fractal dimension based on DEM[J]. Arid Land Geography, 2002, 25(4): 315-320.吕爱锋陈嘻王纲胜. 基于DEM的流域水系分维估算方法探讨[J]. 干旱区地理, 2002, 25(4): 315-320.
31et al. Calculation of the fractal dimension in Lalin River based on GIS[J]. Science of Surveying and Mapping, 2015, 40(4): 63-66.郭忆毕硕本闫业超等. 拉林河流域水系分维研究[J]. 测绘科学, 2015, 40(4): 63-66.
32. The reaserch on drainage networks fractal by GIS[J]. Journal of Northwest University (Natural Science Edition), 2006, 36(4): 659-662.张宏才汤国安. 基于GIS的河网分形研究[J]. 西北大学学报:自然科学版, 2006, 36(4): 659-662.
33. Fractal structure of the Kashubian hydrographic system[J]. Journal of Hydrology, 2013, 488: 48-54.
34. Study on relationship between extracted river network and fractal dimension based on DEM[J]. Geo-Information Science, 2007, 9(4): 133-137.王林陈兴伟. 基于DEM的流域水系分维计算与结果分析[J]. 地球信息科学, 2007, 9(4): 133-137.
35. Analysis of minimum error at river source to extract river network based on DEM[J]. Journal of Geo-Information Science, 2011, 13(2): 240-244.陈冬平陈莹陈兴伟. 以DEM提取流域水系河源的最小误差分析[J]. 地球信息科学学报, 2011, 13(2): 240-244.
36. Multifractal analysis applied to the study of the accuracy of DEM—Based stream derivation[J]. Geomorphology, 2013, 197(3): 85-95.
37et al. Impact factors of contribution area threshold in extracting drainage network for rivers in China[J]. Journal of Hydraulic Engineering, 2013, 44(8): 901-908.孙爱立余钟波杨传国等. 我国水系提取阈值影响因素分析[J]. 水利学报, 2013, 44(8): 901-908.
38et al. The tectonic significance of the fractal dimensions of the drainage systems[J]. Journal of Seismological Research, 1990, 13(4): 389-395.皇甫岗王海王晋南等. 水系分维的构造含义[J]. 地震研究, 1990, 13(4): 389-395.
39. Appraisal of active deformation from drainage network and faults: Inferences from non-linear analysis[J]. Earth Science Informatics, 2015, 8(1): 233-246.
40. Fractal geometric analysis of drainage and loess gully systems in Shanxi and its adjacent areas[J]. Seismology and Geology, 1991, 13(3): 221-229.孔凡臣丁国瑜. 山西及邻区水系与黄土冲沟的分形几何学分析结果及其与构造活动的关系[J]. 地震地质, 1991, 13(3): 221-229.
41. The research on the fractal pattern of water system[J]. Remote Sensing Technology and Application, 1999, 14(4): 44-48.陈圣波胡郁. 水系分维模式研究[J]. 遥感技术与应用, 1999, 14(4): 44-48.
42. Variable complexity of the US continental divide trace[J]. Physical Geography, 2016, 37(6): 511-530.
43. River network fractal of Haihe and Luanhe River drainage basin[J]. Journal of Sediment Research, 1999, (1): 62-65.冯金良张稳. 海滦河流域水系分形[J]. 泥沙研究, 1999, (1): 62-65.
44. On the dimensions of Qinhuai River networks based on the GIS technology[J]. Advances in Water Science, 2002, 13(6): 751-756.王倩邹欣庆朱大奎. 基于GIS技术的秦淮河流域水系分维研究[J]. 水科学进展, 2002, 13(6): 751-756.
45. Relationship between fractal dimension of river networks and their climates[J]. Journal of Tsinghua University(Science & Technology), 2009, 49(12): 1 948-1 953.王博田富强胡和平. 基于分维的水系发育程度与气候特征关系[J]. 清华大学学报:自然科学版, 2009, 49(12): 1 948-1 953.
46. Environmental change in river channels: A neglected element. Towards geomorphological typologies, standards and monitoring[J]. Sciences of Total Environment, 2003, 310(1/3): 17-23.
47et al. Temporal and spatial change of stream structure in Yangtze River Delta and its driving forces during 1960s-2010s[J]. Acta Georaphica Sinica, 2015, 70(5): 819-827.韩龙飞许有鹏杨柳等. 近50年长三角地区水系时空变化及其驱动机制[J]. 地理学报, 2015, 70(5): 819-827.
48et al. Stream construction characteristics in rapid urbanization area: Shenzhen City as a case[J]. Geographical Research, 2008, 27(5): 1 212-1 220.黄奕龙王仰麟刘珍环等. 快速城市化地区水系结构变化特征: 以深圳市为例[J]. 地理研究, 2008, 27(5): 1 212-1 220.
49et al. Analysis on the evolution characteristics and driving factors of the Jingnan Three Port river structure of Yangtze River in recent 61 years[J]. Journal of Water Resources & Water Engineering, 2017, 28(4): 13-20.于丹丹杨波李景保等. 近61年来长江荆南三口水系结构演变特征及其驱动因素分析[J]. 水资源与水工程学报, 2017, 28(4): 13-20.
50et al. Impacts of urbanization on river systems in the Taihu region, China[J]. Water, 2015, 7(4): 1 340-1 358.
51et al. Effect of urbanization on the stream structure and connectivity—A case study in the mid-lower reaches of the Qinhuai River[J]. Journal of Lake Sciences, 2013, 25(3): 335-341.韩龙飞许有鹏邵玉龙等. 城市化对水系结构及其连通性的影响: 以秦淮河中下游为例[J]. 湖泊科学, 2013, 25(3): 335-341.
52et al. River networks system changes and its impact on storage and flood control capacity under rapid urbanization[J]. Hydrological Processes, 2016, 30(13) : 2 401-2 412.
53. Morphological response to river engineering and management in alluvial channels in Italy[J]. Geomorphology, 2003, 50(4): 307-326.
54et al. Application of fractal theory to hydrology and water resources[J]. Advances in Water Science, 2005, 16(1): 141-146.张少文王文圣丁晶等. 分形理论在水文水资源中的应用[J]. 水科学进展, 2005, 16(1): 141-146.
55et al. Fractal features of river system landscape in Wuyishan natural reserve[J]. Journal of Fujian College of Forestry, 2008, 28(4): 319-321.张春英洪伟吴承祯等. 武夷山自然保护区水系景观分形特征[J]. 福建林学院学报, 2008, 28(4): 319-321.
56. Metapopulation capacity of evolving fluvial landscapes[J]. Water Resources Research, 2015, 51(4): 2 696-2 706.
57. The correlation of water with settlement and transportation network: A case study of Turkey[J]. Journal of Environmental Engineering and Landscape Management, 2016, 24(3): 200-209.
58. The fractal study of the drainage geomorphology[J]. Advance in Earth Science, 1993, 8(5): 63-70.高鹏李后强艾南山.流域地貌的分形研究[J]. 地球科学进展, 1993, 8(5): 63-70.
59. Comentropy in erosional drainage-system[J]. Journal of Soil and Water Conservation, 1987,1(2): 1-8.艾南山. 侵蚀流域系统的信息熵[J]. 水土保持学报, 1987,1(2): 1-8].
60et al. River network information extraction and fractal dimension values discussion of Dianchi Basin based on DEM[J]. Environmental Science & Technology, 2010, 33(12): 11-14.丰满张征朱凌等. 基于DEM的滇池流域水系提取及分维值探讨[J]. 环境科学与技术, 2010, 33(12): 11-14.
61et al. Fractal dimension of the hydrographic pattern of three large rivers in the Mediterranean Morphoclimatic System: Geomorphologic Interpretation of Russian (USA), Ebro (Spain) and Volturno (Italy) Fluvial Geometry[J]. Pure and Applied Geophysics, 2015, 172(7): 1 975-1 984.
62. Erosion triangular facets as markers of order in an open dissipative system[J]. Pure and Applied Geophysics, 2015, 172(7): 1 985-1 997.
63et al. Research on the fractal features in Danjiangkou reservoir catchment areas by DEM[J]. China Rural Water and Hydropower, 2017, (4): 121-124.王国重李中原屈建钢等. 基于DEM的丹江口水库水源区水系分形特征研究[J]. 中国农村水利水电, 2017, (4): 121-124.
64. The fractal dimension of river networks and its interpretation[J]. Scientia Geographica Sinica, 1996, 16(2): 124-128.何隆华赵宏. 水系的分形维数及其含义[J]. 地理科学, 1996, 16(2): 124-128.
65. A new index of quantitative study of the drainage geomorphic system[J]. Mountain Research, 1998, 16(1): 8-12.王协康方铎. 流域地貌系统定量研究的新指标[J]. 山地研究, 1998, 16(1): 8-12.
66et al. Analysis of the fractal dimension in the Golmud River Basin based on DEM[J]. Remote Sensing for Land & Resources, 2013, 25(1): 111-116.原晓平刘少峰田贵中等. 基于DEM的格尔木河流域水系分维分析[J]. 国土资源遥感, 2013, 25(1): 111-116.
67. Fractal dimension of the river networks and developing stage of drainage geomorphic of Zuli River Basin[J]. Research of Soil and Water Conservation, 2006, 13(3): 187-188.梁春玲梁海清张祖陆. 祖厉河流域水系分维与地貌发育阶段浅析[J]. 水土保持研究, 2006, 13(3): 187-188.
68. Research on Spatial Fractal Dimensions and Their Relations of Main Landforms and Geological Disasters in China[D]. Nanjing: Nanjing Normal University, 2002.朱晓华. 中国主要地貌与地质灾害的空间分维及其关系研究[D]. 南京: 南京师范大学, 2002.
69. Application of fractal analysis of water system to landslide/debris flow disasters zoning[J]. Journal of Natural Disasters, 2009, 18(4): 63-71.韩杰陆桂华李海涛. 水系分维在滑坡泥石流灾害区划中的应用[J]. 自然灾害学报, 2009, 18(4): 63-71.
70. The relationship between fractal study results and landslide distribution on drainage systems in Gansu and its neighboring areas[J]. Journal of Seismological Research, 1994, 17(4): 383-388.邹谨敞邵顺妹. 甘肃中部及邻区水系分形研究结果与滑坡分布的关系[J]. 地震研究, 1994, 17(4): 383-388.
71. Fractal methods for study on dryness and wetness hazards[J]. Journal of Catastrophology, 2000, 15(2): 17-22.李伟黎洪德. 旱涝灾害的分形研究方法[J]. 灾害学, 2000, 15(2): 17-22.
72. On fractal characters of drought and flood of China[J]. Advances in Earth Science, 2003, 18(4): 509-514.朱晓华蔡运龙王建. 中国旱涝灾害的分形结构[J]. 地球科学进展, 2003, 18(4): 509-514.
73. Fractal characteristics and R/S analysis of time series of flood damage in Henan Province[J]. Journal of Catastrophology, 2007, 22(4): 34-37.景艳芳梁轶张鹏飞. 河南省洪涝灾害时间序列的分形特征与R/S分析[J]. 灾害学, 2007, 22(4): 34-37.
74. Fractal characteristics and R/S analysis of time series of natural disasters[J]. Journal of Natural Disasters, 2005, 14(6): 37-41.倪化勇刘希林. 自然灾害发生时间序列的分形特征及R/S分析[J]. 自然灾害学报, 2005, 14(6): 37-41.
75. Fractal study on time series of drought and flood disasters of the recent 500 years in Yunnan Province[J]. Journal of Catastrophology, 2010, 25(2): 76-80.丁贤法李巧媛胡国贤. 云南省近500年旱涝灾害时间序列的分形研究[J]. 灾害学, 2010, 25(2): 76-80.
76. Fractal analysis applied to the 7 drainage basins and the flood in China[J]. Journal of Catastrophology, 2002, 17(3): 9-13.杨秀春朱晓华. 中国七大流域水系与洪涝的分维及其关系研究[J]. 灾害学, 2002, 17(3): 9-13.
77. River fractal dimension and the relationship between river fractal dimension and river flood: Case study in the middle and lower course of the Yangtze River[J]. Advances in Water Science, 2005, 16(4): 530-534.马宗伟许有鹏李嘉峻. 河流形态的分维及与洪水关系的探讨——以长江中下游为例[J]. 水科学进展, 2005, 16(4): 530-534.
78. Correlation between flood frequency and geomorphologic complexity of rivers network—A case study of Hangzhou China[J]. Journal of Hydrology, 2015, 527: 113-118.
79. Bilateral symmetry of spatial distribution of cities in China[J]. Advances in Earth Science, 2006, 21 (7): 687-694.陈彦光余斌. 中国城市空间分布的双侧对称性[J]. 地球科学进展, 2006, 21(7): 687-694.
80. Studies of analogies of fractal structure between river networks and systems of central places: A theoretical approach to the symmetry between physical and human geographical systems[J]. Progress in Geography, 2001, 20 (1): 81-88.陈彦光刘继生. 中心地体系与水系分形结构的相似性分析——关于人—地对称关系的一个理论探讨[J]. 地理科学进展, 2001, 20(1): 81-88.
81. Multifractal measures based on Man-Land relationships of the spatial structure of the urban system in Henan[J]. Scientia Geographica Sinica, 2003, 23 (6): 713-720.刘继生陈彦光. 河南省城镇体系空间结构的多分形特征及其与水系分布的关系探讨[J]. 地理科学, 2003, 23(6): 713-720.
82. Calculating the area of urban-rural construction land based on the human-earth harmonious fractal relations[J]. City Planning Review, 2011, 35 (7): 20-23.赵珂冯月韩贵锋. 基于人地和谐分形的城乡建设用地面积测算[J]. 城市规划, 2011, 35(7): 20-23.
Citation statistics
Document Type期刊论文
Identifierhttp://119.78.100.147:8080/handle/2SELTVKS/74818
Collection骨干期刊_地球科学进展
Affiliation1. 中国地质大学(武汉) 环境学院,湖北 武汉 430074
2. 中国地质大学(武汉)地质调查研究院,湖北 武汉 430074
3. 西安理工大学 水利水电学院,陕西 西安 710048
First Author AffilicationGeology in China
Recommended Citation
GB/T 7714
孟宪萌,张鹏举,周宏,等. 水系结构分形特征的研究进展[J],2019,34(1):48-56.
APA 孟宪萌,张鹏举,周宏,&刘登峰.(2019).水系结构分形特征的研究进展.,34(1),48-56.
MLA 孟宪萌,et al."水系结构分形特征的研究进展".34.1(2019):48-56.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[孟宪萌]'s Articles
[张鹏举]'s Articles
[周宏]'s Articles
Baidu academic
Similar articles in Baidu academic
[孟宪萌]'s Articles
[张鹏举]'s Articles
[周宏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孟宪萌]'s Articles
[张鹏举]'s Articles
[周宏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.