细叶百合低温解除休眠过程中鳞茎内糖分及相关酶的研究
Alternative TitleChanges in carbohydrate status and related enzymes of Lilium pumilum bulbs during breaking dormancy under refrigerated conditions
刘芳;  陈业雯;  李丹丹;  廉华;  吴瑕;  杨瑾;  李雨琦;  谢守峰;  陈学武
2018-09-21
Volume25Issue:5Pages:60
Abstract通过低温处理打破细叶百合鳞茎休眠,探讨细叶百合鳞茎解除休眠过程中的糖类化合物及蔗糖、淀粉代谢酶的变化规律。结果表明,鳞茎休眠解除过程中伴随着旺盛的糖类代谢活动,淀粉含量下降,淀粉酶活性升高。内层鳞片在冷藏60 d时可溶性糖含量达到峰值,贮藏前期,蔗糖含量,蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性上升,SPS和SS协同控制蔗糖代谢及转运。冷藏条件下鳞片及顶芽内淀粉向可溶性糖方向代谢过程中促进了腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)活性的增加。各种淀粉代谢相关酶在鳞茎冷藏不同时期和不同部位的作用规律不同。鳞茎各个部位总可溶性糖含量与蔗糖、葡萄糖含量及淀粉磷酸化酶(SP)、SS、α-及β-淀粉酶活性都存在显著或极显著的正相关性。糖类代谢成为鳞茎休眠解除的物质基础。
Other AbstractThe changes in carbohydrate levels and related enzyme activities during breaking dormancy under low temperature were studied in Lilium pumilum. Sugar metabolic activity was strong during breaking dormancy and the starch content of bulbs decreased;while amylase activity remained high. The concentration of soluble sugars peaked at 60 d of storage. In the early phase of storage;the sucrose content;and the activities of sucrose synthase (SS) and sucrose phosphate synthase were rising;synergistically controlling sucrose metabolism and transport. Under refrigeration the metabolism of starch to soluble sugar promoted an increase in AGPase activity. The functions and changes of enzymes involved in starch metabolism in different parts of the bulb were different. There were significantly or very significantly positive correlations of total soluble sugar content with the contents of sucrose and glucose;and the activities of starch phosphorylase;SS;and alpha and beta amylases in different parts of bulbs. Sugar metabolism was the primary metabolic activity for breaking dormancy of bulbs.
Keyword细叶百合 鳞茎 休眠 冷藏 糖类化合物 Lilium pumilum bulb dormancy cold storage sugar
DOI10.11686/cyxb2015343
References[1] Miller W B;Langhans R W. Low temperature alters carbohydrate metabolism in Easter lily bulbs. HortScience;1990;25(4): 463-465.
[2] Shin K S;Chakrabarty D;Paek K Y. Sprouting rate;change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro . Scientia Horticulturae;2002;96: 195-204.
[3] Xia Y P;Huang C H;He G F;et al . Changes of carbohydrates metabolism and enzymes activities in low temperature storage for bulbs of Lilium oriental hybrids. Acta Horticulturae Sinica;2006;33(3): 571-576.
[4] Botha F C;Black K G. Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Australian Journal of Plant Physiology;2000;27(1): 81-85.
[5] Sun H M;He L;Wang W W;et al . Mechanism of starch-sucrose metabolism regulated by IBA as well as GA 3 during dcale cutting propagation in Lilium . Scientia Agricultura Sinica;2011;44(4): 798-806.
[6] Huber S C;Huber J L. Role and regulation of sucrose-phosphate synthase in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology;1996;47: 431-445.
[7] Li X Q;Zhang D P. Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato. Plant & Cell Physiology;2003;44(6): 630.
[8] Edurne B;Francisco J. Sucrose synthase catalyzes the de novo production of ADP glucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant & Cell Physiology;2003;44(5): 500.
[9] Sun H M;Li T L;Li Y F. Starch metabolism and sprouting of bulb in Lilium davidii var. Unicolor stored at different cold temperatures. Acta Horticulturae Sinica;2004;31(3): 337-342.
[10] Tu S P;Mu D;Liu C. The physiological and biochemical changes of lily bulbs during dormancy release with cold treatment. Acta Agriculturae Universitatis Jiangxiensis;2005;27(3): 404-407.
[11] Li H S. Principle and Technology of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press;2000.
[12] Shanghai Institute of Plant Physiology;The Chinese Academy of Sciences. The Guide of Modern Plant Physiology Experiment[M]. Beijing: Science Press;1999.
[13] Wu S S. Rules of Source-sink Exchange of the Bulb of Oriental Lily ‘sorbonne’[D]. Beijing: Beijing Forestry University;2012.
[14] Tan C X. Expressions of Starch Synthase Genes and Starch Synthesis in Wheat Grains[D]. Yangzhou: Yangzhou University;2009.
[15] Gao J F. Plant Physiology Experiment Instruction[M]. Beijing: Higher Education Press;2006.
[16] Geigenberger P. Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiology;2011;155: 1566-1577.
[17] Kötting O;Kossmann J;Zeeman S;et al . Regulation of starch metabolism: The age of enlightenment. Current Opinion in Plant Biology;2010;13: 321-329.
[18] Ge J;Yang C J;Yang Z M;et al . Quality of mixed naked oats ( Avena nuda ) and alfalfa ( Medicago sativa ) silage. Acta Prataculturae Sinica;2015;24(4): 104-113.
[19] Eilleen P O;Rickey Y Y;Alejandro G M. Low temperature sweetening in potato tubers. Plant Physiology;1995;145: 335-341.
[20] Touchette B W;Burkholder J M. Overview of the physiological ecology of carbon metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology;2000;250(1-2): 169-205.
[21] Legnani G;Watkins C B;Miller W B. Effects of hypoxic and anoxic controlled atmospheres on carbohydrates;organic acids;and fermentation products in Asiatic hybrid lily bulbs. Postharvcst Biology and Technology;2010;56(1): 85-94.
[22] He L. Suerose Metabolic Mechanism of Lilium Asiatic Bulb during Bulb Development and Cooling Storage[D]. Shenyang: Shenyang Agricultural University;2011.
[23] Koch K E. Carbohydrate modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology;1996;47: 509-540.
[24] Srneekens S;Rook F. Sugar sensing and sugar mediated signal transduction in plants. Plant Physiology;1997;115: 7-13.
[25] Wang P;Lian Y;Jin L J. The research on the regulation of enzymes during dormancy and dormancy releasing. Acta Agriculturae Boreali-Sinica;2003;18(1): 33-36.
[26] Sweetlove L J;Müller-Röber B;Lothar W;et al . The contribution of adenosine 5'-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers. Planta;1999;20(9): 330-337.
[27] Sergeeva L I;Claassens M M J;Jamar D C L;et al . Starch-related enzymes during potato tuber dormancy and sprouting. Russian Journal of Plant Physiology;2012;59(4): 556-564.
[3] 夏宜平;黄春辉;何桂芳;等. 东方百合鳞茎冷藏解除休眠的养分代谢和酶活性变化. 园艺学报;2006;33(3): 571-576.
[5] 孙红梅;何玲;王微微;等. IBA与GA 3 调控百合鳞片扦插繁殖的“淀粉-蔗糖”代谢机制. 中国农业科学;2011;44(4): 798-806.
[9] 孙红梅;李天来;李云飞. 不同贮藏温度下兰州百合种球淀粉代谢与萌发关系初探. 园艺学报;2004;31(3): 337-342.
[10] 涂淑萍;穆鼎;刘春. 百合鳞茎低温解除休眠过程中的生理生化变化研究.江西农业大学学报;2005;27(3): 404-407.
[11] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社;2000.
[12] 中国科学院上海植物生理研究所. 现代植物生理学实验指南[M]. 北京: 科学出版社;1999.
[13] 吴沙沙. 东方百合‘索邦’鳞茎源—库转换规律研究[D]. 北京: 北京林业大学;2012.
[14] 谭彩霞. 小麦籽粒淀粉合成酶基因表达与淀粉合成的关系[D]. 扬州: 扬州大学;2009.
[15] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社;2006.
[18] 葛剑;杨翠军;杨志敏;等. 紫花苜蓿和裸燕麦混贮发酵品质和营养成分分析. 草业学报;2015;24(4): 104-113.
[22] 何玲. 亚洲百合鳞茎发育和低温贮藏过程中蔗糖代谢机制研究[D]. 沈阳: 沈阳农业大学;2011.
[25] 王鹏;连勇;金黎甲. 马铃薯块茎休眠及萌发过程中几种酶活性的变化. 东北农学报;2003;18(1): 33-36.
Citation statistics
Document Type期刊论文
Identifierhttp://119.78.100.147:8080/handle/2SELTVKS/54905
Collection骨干期刊_草业学报
Recommended Citation
GB/T 7714
刘芳;陈业雯;李丹丹;廉华;吴瑕;杨瑾;李雨琦;谢守峰;陈学武. 细叶百合低温解除休眠过程中鳞茎内糖分及相关酶的研究[J],2018,25(5):60.
APA 刘芳;陈业雯;李丹丹;廉华;吴瑕;杨瑾;李雨琦;谢守峰;陈学武.(2018).细叶百合低温解除休眠过程中鳞茎内糖分及相关酶的研究.,25(5),60.
MLA 刘芳;陈业雯;李丹丹;廉华;吴瑕;杨瑾;李雨琦;谢守峰;陈学武."细叶百合低温解除休眠过程中鳞茎内糖分及相关酶的研究".25.5(2018):60.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘芳;陈业雯;李丹丹;廉华;吴瑕;杨瑾;李雨琦;谢守峰;陈学武]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘芳;陈业雯;李丹丹;廉华;吴瑕;杨瑾;李雨琦;谢守峰;陈学武]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘芳;陈业雯;李丹丹;廉华;吴瑕;杨瑾;李雨琦;谢守峰;陈学武]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.