四倍体彩色马铃薯花青素含量及产量性状的QTL定位
Alternative TitleQTL location of anthocyanin content and yield in tetraploid pigmented potato
崔阔澍;  于肖夏;  于卓;  姜超;  石悦
2018-09-21
Volume25Issue:5Pages:116
Abstract为确定彩色马铃薯薯块花青素含量、单株产量和商品薯率3个重要性状的QTL位点,以四倍体彩色马铃薯‘黑美人’בMIN-021’杂种F1代分离群体的210个单株无性株系及其亲本为材料,通过对这3个重要性状进行两年一点的观测试验,以及亲本间和杂种株系间的差异显著性分析,用TetraploidMap软件在已构建出的2张双亲的高密度彩色马铃薯分子遗传连锁图谱上分别定位其QTL。结果显示,这3个性状在亲本间和杂种株系间差异显著,且F1群体单株株系间各性状观测值均呈正态分布,适合QTL分析。在母本‘黑美人’的遗传连锁图谱上检测到13个QTL,其中控制花青素含量的有5个、单株产量和商品薯率各有4个,遗传贡献率变幅为7.98%~19.62%。在父本‘MIN-021’的遗传连锁图谱上检测到11个QTL,其中花青素含量和单株产量各有4个、商品薯率有3个,遗传贡献率范围在8.70%~21.62%之间。
Other AbstractTo identify QTLs for three important traits;anthocyanin content;single plant yield and commodity rate in a pigmented potatoes;210 plants from a F1 segregated population resulting from a cross of ‘heimeiren’בMIN-021’ and their parents;anthocyanin content;single plant yield and commodity potato rate were measured over two consecutive years. Differences between parents and the F1 population were assessed using variance analysis and the QTLs of each trait were constructed using high density genetic linkage maps with TetraploidMap software. The result demonstrated that the frequency distribution of all three traits was normal in the F1 population and therefore suitable for QTL analysis. A total of 13 QTLs were detected on a maternal linkage map of ‘heimeiren’;including 5 QTLs controlling anthocyanin content;4 QTLs controlling single plant yield and 4 QTLs controlling commodity potato rate. The genetic contribution ratio ranged from 7.98% to 19.62%; a total of 11 QTLs were detected on a paternal linkage map of ‘MIN-021’;including 4 QTLs controlling anthocyanin content;4 QTLs controlling single plant yield and 3 QTLs controlling commodity potato rate. The genetic contribution ratio ranged from 8.70% to 21.62%.
Keyword彩色马铃薯 杂种F1分离群体 花青素含量 单株产量 商品薯率 QTL定位 pigmented potato hybrid F1 population anthocyanin content single plant yield commodity potato rate QTL location
DOI10.11686/cyxb2015369
References[1] Pietta P G. Flavonoids as antioxidants. Journal of Natural Products;2000;63: 1035-1042.
[2] Potapovich A I;Kostyuk V A. Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Bio-chemistry;2003;68: 514-519.
[3] Middleton E;Kandaswami C;Theoharides T C. The effects of plant flavonoids on mammalian cells: Implications for inflammation;heart disease and cancer. Pharmacological Reviews;2000;52: 673-751.
[4] Shi S C;Gao Y K;Zhang X M;et al . Progress on plant genes involved in biosynthetic pathway of anthocyanins. Bulletin of Botanical Research;2011;31(5): 633-640.
[5] Luis E R;Monica M;Ronald E W;et al . Anthocyanin pigment composition of red-fleshed potatoes. Journal of Food Science;1998;63(3): 458-465.
[6] Brown C R;Wrolstad R;Durst R;et al . Breeding studies in potatoes containing high concentrations of anthocyanins. Molecular Genomic Secular Breeding;2003;80: 241-250.
[7] Visker M;Heilersig H;Kodde L P;et al . Genetic linkage of QTLs for late blight resistance and foliage maturity type in six related potato progenies. Euphytica;2005;143(1-2): 189-199.
[8] Costanzo S;Simko I;Christ B J;et al . QTL analysis of late blight resistance in a diploid potato family of Solanum phureja×S. stenotomum . Theoretical Applied Genetics;2005;111: 609-617.
[9] Chakrabarti S K;Singh B P;Garima Thakur;et al . QTL analysis of late blight resistance in a diploid potato family of Solanum spegazzinii×S. chacoense . Potato Research;2014;57: 1-11.
[10] Gao G;Jin L P;Qu D Y;et al . Identification of common AFLP markers linked with resistance to bacterial wilt in potato. Acta Botanica Boreali-Occidentalia Sinica;2005;25(2): 269-274.
[11] Cui K S. Construction of High-density Molecular Genetic Linkage Maps and Mapping QTLs for Important Traits such as Anthocyanin Content in Colored Potato[D]. Hohhot: Inner Mongolia Agricultural University;2015.
[12] Zhang Z Q;Yu X X;Ju T H;et al . Identification of two cross combinations of F 1 Solanum tuberosum by SSR molecular marker. Chinese Journal of Eco-Agriculture;2013;21(11): 1411-1415.
[13] Yang X H;Ge Y Y;Wang L. Study on the optimization of extraction technique and stability of proanthocyanidins from ‘Heimeiren’ potatoes. Journal of Anhui Agricultural Sciences;2011;39(29): 18256-18257;18314.
[14] Zhang X M. Breeding and SSR Analysis of Excellent Clones of Color Potato Hybrids F 1 [D]. Hohhot: Inner Mongolia Agriculture University;2013.
[15] Li C Q. Identification of Potato Hybirds by SSR Markers and Research on Breeding of Excellent New Strain with Black Scruf Resistance[D]. Hohhot: Inner Mongolia Agriculture University;2012.
[16] Hackett C A;Pande B;Bryan G J. Constructing linkage maps in autotetraploid species using simulated annealing. Theoretical Applied Genetics;2003;106(6): 1107-1115.
[17] Luo Z W;Zhang Z;Leach L;et al . Constructing genetic linkage maps under a tetrasomic model. Genetics;2006;172(4): 2635-2645.
[18] Voorrips R E. Map Chart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity;2006;93(1): 77-78.
[19] Yu X X. Development of A High-density Genetic Linkage Map and Mapping of QTLs for Dry-matter Content in Sweet Potato;Ipomoea batatas (L. ) Lam[D]. Beijing: China Agricultural University;2013.
[20] Schafer P R;Ritter E;Concilio L;et al . Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theoretical Applied Genetics;1998;97: 834-846.
[21] Lander E S;Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics Society of America;1989;121(1): 185-199.
[22] Wang Z L;Liu S D;Liu H Y;et al . Genetic linkage map in‘Bainong 64’בJingshuang 16’of wheat. Acta Botanica Boreali-Occidentalia Sinica;2006;26(5): 886-892.
[23] Hu L L;Ye Y Q;Lv T T;et al . QTL mapping and genetic analysis for grain weight in wheat under different water environments. Acta Prataculturae Sinica;2015;24(8): 118-129.
[24] Bradshaw J E;Hackett C A;Pande B;et al . QTL mapping of yield;agronomic and quality traits in tetraploid potato ( Solanum tuberosum subsp. tuberosum ). Theoretical Applied Genetics;2008;116(2): 193-211.
[4] 石少穿;高亦珂;张秀梅;等. 植物花青素生物合成相关基因的研究及应用. 植物研究;2011;31(5): 633-640.
[10] 郜刚;金黎平;屈冬玉;等. 马铃薯青枯病抗性的共性AFLP标记的初步定位. 西北植物学报;2005;35(2): 269-274.
[11] 崔阔澍. 彩色马铃薯高密度分子遗传连锁图谱构建及花青素等重要性状QTL定位[D]. 呼和浩特: 内蒙古农业大学;2015.
[12] 张自强;于肖夏;鞠天华;等. 2个马铃薯杂交组合F 1 的SSR 鉴定. 中国生态农业学报;2013;21(11): 1411-1415.
[13] 杨晓辉;葛云叶;汪岭. ‘黑美人’马铃薯中原花青素的提取工艺优化及稳定性分析. 安徽农业科学;2011;39(29): 18256-18257;18314.
[14] 张晓萌. 彩色马铃薯杂种F 1 优良无性株系选育及SSR分析[D]. 呼和浩特: 内蒙古农业大学;2013.
[15] 李长青. 马铃薯高产优质抗病优良株系的选育及SSR分析[D]. 呼和浩特: 内蒙古农业大学;2012.
[19] 于肖夏. 甘薯高密度分子连锁图谱的构建和干物质含量的QTL定位[D]. 北京: 中国农业大学;2013.
[22] 王竹林;刘曙东;刘惠远;等.‘百农64’ב京双16’小麦遗传连锁图谱构建. 西北植物学报;2006;26(5): 886-892.
[23] 胡亮亮;叶亚琼;吕婷婷;等. 不同水分环境下小麦粒重QTL定位及遗传分析. 草业学报;2015;24(8): 118-129.
Citation statistics
Document Type期刊论文
Identifierhttp://119.78.100.147:8080/handle/2SELTVKS/54903
Collection骨干期刊_草业学报
Recommended Citation
GB/T 7714
崔阔澍;于肖夏;于卓;姜超;石悦. 四倍体彩色马铃薯花青素含量及产量性状的QTL定位[J],2018,25(5):116.
APA 崔阔澍;于肖夏;于卓;姜超;石悦.(2018).四倍体彩色马铃薯花青素含量及产量性状的QTL定位.,25(5),116.
MLA 崔阔澍;于肖夏;于卓;姜超;石悦."四倍体彩色马铃薯花青素含量及产量性状的QTL定位".25.5(2018):116.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[崔阔澍;于肖夏;于卓;姜超;石悦]'s Articles
Baidu academic
Similar articles in Baidu academic
[崔阔澍;于肖夏;于卓;姜超;石悦]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[崔阔澍;于肖夏;于卓;姜超;石悦]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.