Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响
王玉萍;  常宏;  李成;  梁延超;  卢萧
2018-09-21
其他题名Effects of exogenous Ca2+ on growth;photosynthetic characteristics and photosystem II function of maize seedlings under cadmium stress
卷号25期号:5页码:40
摘要为探究钙(Ca2+)对玉米镉(Cd)胁迫的缓解作用,采用盆栽试验,研究了根部施加外源Ca2+对Cd胁迫下玉米幼苗生长、光合特征及叶绿素荧光参数等生理指标的影响。结果显示,与对照(CK)相比,100 mg/L的Cd处理显著降低了玉米幼苗株高、根、地上部生物量以及玉米叶片叶绿素a、叶绿素b和总叶绿素含量。同时,净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、PSⅡ最大光化学效率(Fv/Fm)、电子传递速率(ETR)、PSⅡ激发能捕获效率(Fv'/Fm')、光化学淬灭系数(qP)和PSⅡ实际光化学效率(ΦPSⅡ)显著下降,而非光化学淬灭系数(NPQ)和胞间CO2浓度(Ci)较CK显著上升。外源施加Ca2+可以有效增加镉胁迫下幼苗生物量的积累,明显提高叶绿素a、叶绿素b和叶绿素总量,升高Pn,Gs,Tr,Fv/Fm,ETR,Fv'/Fm',降低NPQ和Ci,增加幼苗生物量积累,Ca2+浓度为7.5~10.0 mmol/L时各指标变化幅度最明显,缓解胁迫的效果最佳。研究结果表明,Cd胁迫使玉米幼苗叶片PSⅡ原初光能转化效率降低,电子传递受到抑制,净光合速率降低。适宜浓度的外源Ca2+能有效缓解Cd对光合机构的伤害,增强幼苗叶片对光的捕获能力,促进光合作用,增加幼苗的生物量,增强玉米幼苗对Cd胁迫的抗性。
其他摘要To investigate how calcium relieves cadmium toxicity in maize;the effects of exogenous Ca2+ on growth properties;photosynthetic characteristics and chlorophyll fluorescence parameters of maize seedlings under cadmium stress were studied in a pot experiment. A treatment with 100 mg/L of cadmium obviously inhibited the growth of maize seedlings;decreased the biomass of plants;and decreased the contents of chlorophyll a;b and a+b of leaves. At the same time;the net photosynthetic rate (Pn);stomatal conductance (Gs);transpiration rate (Tr);the maximal PSⅡ efficiency (Fv/Fm);photosynthetic electron transfer rate (ETR);the efficiency of excitation energy capture by open PSⅡ centers (Fv'/Fm');photochemical quenching coefficient (qP);and the actual PSⅡ efficiency (ΦPSⅡ) were reduced whereas the intercellular CO2 concentration (Ci) and non-photochemical fluorescence quenching coefficient (NPQ) were increased under cadmium stress. Supply of exogenous Ca2+ under cadmium stress promoted the growth of seedlings;increased the biomass of plants and raised the contents of chlorophyll a;b and a+b of leaves. At the same time;Pn;Gs;Tr;Fv/Fm;ETR;Fv'/Fm';qP and ΦPSⅡ of leaves tended to be increased with increased exogenous Ca2+ concentration;but Ci and NPQ were reduced. Among different Ca2+ application rates;7.5 to 10.0 mmol/L Ca2+ had the greatest alleviation of Cd toxicity effects. It is suggested that Cd stress led to a decrease in the photochemical efficiency of PSⅡ;reduction in electron transfer;and reduction in net photosynthetic rate. Exogenous Ca2+at appropriate concentrations had favorable effects on seedling growth;including enhanced performance of the photosynthetic apparatus and capture of solar energy;effectively ameliorate Cd-induced depression of photosynthesis and enhancing the resistance of maize seedlings to Cd stress.
关键词镉胁迫 玉米 光合特性 PSⅡ 功能 cadmium stress maize (Zea mays) calcium photosynthesis characteristics PSⅡ function
DOI10.11686/cyxb2015239
参考文献[1] Zhang J B;Huang W N. Advances on physiological and ecological effects of cadmium on plants. Acta Ecologiga Sinica;2000;20(3): 514-523.
[2] Liu J X. Physiological and ecological responses of maize seedlings to cadmium stress. Chinese Journal of Ecology;2005;24(3): 265-268.
[3] Zhang L;Yu Y L;Zhang L. Influence of added cadmium stress on photosynthetic characteristics of maize in seedling stage. Acta Agriculturae Boreali-Sinica;2008;23(1): 101-104.
[4] Qin H M;Peng L L;Yang X;et al . Effect of Cd 2+ on the seed germination and seedling growth of Cynodon dactylon and Eremochloa ophiuroides . Acta Prataculturae Sinica;2015;24(5): 100-107.
[5] Li J M;Wang H X. Eco-physiological responses and resistance to cadmium stress in three varieties of maize. Journal of Yunnan University;2000;22(4): 311-317.
[6] Jarvis J C;Jones L H P;Hopper M J. Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil;1976;44: 179-191.
[7] Krupa Z;Moniak M. The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity. Plant Science;1998;138: 149-156.
[8] Bazzaz F A;Rolfe G L;Carlson R W. Effect of Cd on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiology of Plant;1974;32: 373-376.
[9] Zhao S C;Sun J W;Ma Y Z;et al . Effects of cadmium on reactive oxygen species metabolism;activities and gene expressions of superoxide dismutase and catalase in maize ( Zea mays ) seedling. Scientia Agricultura Sinica;2008;41(10): 3025-3032.
[10] Zhao X;Wang Y L;Wang Y J;et al . Extracellular Ca 2+ regulating stomatal movement and plasma membrane K + channels in guard cells of Vicia faba under salt stress. Acta Agronomica Sinica;2008;34(11): 1970-1976.
[11] Liu D H;Wang M;Zou J H;et al . Uptake and accumulation of cadmium and some nutrient ions by roots and shoots of maize ( Zea mays L.). Pakistan Journal of Botany;2006;38(3):701-709.
[12] Zhang N H;Gao H Y;Zou Q. Effect of calcium on alleviation of decreased photosynthetic ability in salt-stressed maize leaves. Acta Phytoecologica Sinica;2005;29(2): 324-330.
[13] Wang H;Zhou W;Lin B. Effects of Ca on growth and some physiological characteristics of maize under Cd stress. Plant Nutrition and Fertilizer Science;2001;7(1): 78-87.
[14] Wang F;Wang D D;Zhao J;et al . Positive effect of calcium on oxidative damage in maize seedling under chilling stress. Agricultural Research in the Arid Area;2014;32(1): 155-160.
[15] van Kooten O;Snel J F H. Plant spectrofluorometry: Applications and basic research. Photosynthetica;2002;40: 528-533.
[16] Zhang Y P;Fan H W;Yang S J. Alleviating effects of exogenous salicylic acid on growth;photosynthesis and reactive oxygen metabolism in melon seedlings under cadmium stress. Plant Physiology Journal;2014;50(10): 1555-1562.
[17] Muradoglu F;Gundogdu M;Ercisli S;et al . Cadmium toxicity affects chlorophyll a and b content;antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research;2015;48(1): 11-15.
[18] Woolhouse H W. Toxicity and tolerance in the responses of plant to metals. Physiological Plant Ecology;1983;12: 245-300.
[19] Li G;Zhang S P;Liu P. Effect of cadmium on photosystem activities of maize ( Zea mays L.) leaves. Scientia Agricultura Sinica;2011;44(15): 3118-3126.
[20] Alcantara E;Romera F J;Canete M;et al . Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber ( Cucumis sativus L.) plants. Journal of Experimental Botany;1994;45: 1893-1898.
[21] Das P;Samantaray S;Rout G R. Studies on cadmium toxicity in plants: a review. Environmental Pollution;1997;98: 29-36.
[22] Krause G H;Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Plant Molecular Biology;1991;42: 313-349.
[23] Baker N R. A possible role for photosystem II in environmental perturbations of photosynthesis. Physiology Plant;1991;81: 563-570.
[24] Havaux M;Strasser R J;Greppin H. A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and non photochemical event. Photosynthesis Research;1991;27: 41-45.
[25] Carrasco R M;Rodriguez J S;Perez P. Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia forst. Photosynthetica;2002;40(3): 363-368.
[26] Zhou W;Lin B. Alleviation of Cd toxicity by Ca for maize ( Zea mays ) and its mechanism. International Symposium on Soil;Human and Environment Interactions[M]. Beijing: China Science and Technology Press;1998: 267-271.
[27] Perfus-Barbeoch L;Leonhardt N;Vavasseur A;et al . Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal: for Cell and Molecular Biology;2002;32(4): 539-548.
[1] 张金彪;黄维南. 镉对植物的生理生态效应的研究进展. 生态学报;2000;20(3): 514-523.
[2] 刘建新. 镉胁迫下玉米幼苗生理生态的变化. 生态学杂志;2005;24(3): 265-268.
[3] 张磊;于燕玲;张磊. 外源镉胁迫对玉米幼苗光合特性的影响. 华北农学报;2008;23(1): 101-104.
[4] 岑画梦;彭玲莉;杨雪;等. Cd 2+ 对狗牙根、假俭草种子萌发及幼苗生长的影响. 草业学报;2015;24(5): 100-107.
[5] 李俊梅;王焕校. 镉胁迫下玉米生理生态反应与抗性差异研究. 云南大学学报(自然科学版);2000;22(4): 311-317.
[9] 赵士诚;孙静文;马有志;等. 镉对玉米幼苗活性氧代谢、超氧化物歧化酶和过氧化氢酶活性及其基因表达的影响. 中国农业科学;2008;41(10): 3025-3032.
[10] 赵翔;汪延良;王亚静;等. 盐胁迫条件下外源Ca 2+ 对蚕豆气孔运动及质膜K + 通道的调控. 作物学报;2008;34(11): 1970-1976.
[12] 张乃华;高辉远;邹琦. Ca 2+ 缓解NaCl胁迫引起的玉米光合能力下降的作用. 植物生态学报;2005;29(2): 324-330.
[13] 汪洪;周卫;林葆. 钙对镉胁迫下玉米生长及生理特性的影响. 植物营养与肥料学报;2001;7(1): 78-87.
[14] 王芳;王丹丹;赵娟;等. 钙对低温胁迫下玉米幼苗氧化损伤的保护作用. 干旱地区农业研究;2014;32(1): 155-160.
[16] 张永平;范红伟;杨少军. 外源水杨酸对镉胁迫下甜瓜幼苗生长、光合作用和活性氧代谢的缓解效应. 植物生理学报;2014;50(10): 1555-1562.
[19] 李耕;张善平;刘鹏. 镉对玉米叶片光系统活性的影响. 中国农业科学;2011;44(15): 3118-3126.
[26] 周卫;林葆. 钙缓解玉米( Zea mays )镉毒性及其作用机理.土壤、人与环境相互作用国际研讨会[M]. 北京: 中国科学技术出版社;1998: 267-271.
引用统计
文献类型期刊论文
条目标识符http://119.78.100.147:8080/handle/2SELTVKS/54902
专题骨干期刊_草业学报
推荐引用方式
GB/T 7714
王玉萍;常宏;李成;梁延超;卢萧. Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响[J],2018,25(5):40.
APA 王玉萍;常宏;李成;梁延超;卢萧.(2018).Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响.,25(5),40.
MLA 王玉萍;常宏;李成;梁延超;卢萧."Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响".25.5(2018):40.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王玉萍;常宏;李成;梁延超;卢萧]的文章
百度学术
百度学术中相似的文章
[王玉萍;常宏;李成;梁延超;卢萧]的文章
必应学术
必应学术中相似的文章
[王玉萍;常宏;李成;梁延超;卢萧]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。