新疆不同草地类型植物物种特征与水热因子的关系研究 | |
Alternative Title | RelationshipbetweenplantspeciescharacteristicsandclimatefactorsindifferentgrasslandtypesofXinjiang |
刘利利; 盛建东; 程军回; 刘耘华; 李瑞霞; 赵丹 | |
2018-09-21 | |
Volume | 25Issue:5Pages:1 |
Abstract | 本文以新疆7种草地为研究对象,调查364个样地的物种名录,分析不同草地植物科属种的变化特征,探讨了植物物种丰富度(SR)对年平均温度(MAT)、降水(MAP)、海拔的响应。研究结果表明,新疆草地以禾本科、菊科为优势科,优势属为针茅属、绢蒿属;物种丰富度变化为:温性草甸草原(7.73)>温性草原(5.04)>高寒草原(4.36)>温性荒漠草原(3.99)>温性草原化荒漠(3.02)>温性荒漠(2.08)>低平地草甸(1.43);全部样地和温性草原的SR与MAP呈正相关,与MAT、海拔呈峰型关系;低平地草甸和高寒草原的SR与MAP呈正相关而与MAT呈负相关,与海拔呈先降低再增加的趋势;温性荒漠草原的SR与MAP呈正相关,与MAT、海拔无相关性;温性荒漠的SR与MAP呈正相关,与MAT呈负相关,与海拔呈峰型关系;温性草甸草原和温性草原化荒漠的SR与MAT、MAP均无相关性。不同草地类型对温度、降水响应的差异,是由于植被类型和温度、降水的空间分异性,对于海拔的分异,来源于海拔梯度范围和所研究地区大尺度的气候特征。 |
Other Abstract | For 364 field sites representing seven grassland types in Xinjiang;species lists were compiled;and the distribution of plant families;genera and species across the different grassland types cataloged. In addition;we examined the species richness (SR) response to mean annual precipitation (MAP);mean annual temperature (MAT) and altitude. The Poaceae and Ateraceae were the dominant families;and Stipa;and Seriphidium were among the dominant genera at all sites. The grassland types ranked for SR (from high to low): temperate meadow steppe (7.73);temperate steppe (5.04);alpine steppe (4.36);temperate desert steppe (3.99);temperate steppe desert (3.02);temperate desert (2.08);low plain meadow (1.43). Patterns of SR response to MAP;MAT and altitude were also detected. In Xinjiang grassland temperate steppe;SR was positively and linearly related to MAP;but unimodally related to MAT and altitude. In alpine steppe and low plain meadow;SR was positively and linearly related with MAP and negatively related with MAT;but SR decreased from low to mid altitude and then increased with increasing altitude. In temperate desert steppe;SR was significantly positively related to MAP;but was not significantly related to MAT and altitude. In alpine steppe and low plain meadow;the SR was positively and linearly related to MAP and negatively related to MAT;but unimodally related to altitude. No significant relationship was found between SR and MAT;MAP;or altitude in temperate meadow steppe and temperate steppe desert grasslands. The above results in the different grassland types might be explained by response characteristics of particular species;spatial variation of temperature and precipitation;and the altitude range;steepness of slope and large scale climate characteristics of the study area. |
Keyword | 海拔 草地 年平均降水 年平均温度 物种丰富度 altitude grassland mean annual precipitation mean annual temperature species richness |
DOI | 10.11686/cyxb2015517 |
References | [1] Schönbach P;Wan H;Gierus M;etal . Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant & Soil;2011;340(1-2): 103-115. [2] Shan Y;Chen D;Guan X;etal . Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biology & Biochemistry;2011;43(9): 1943-1954. [3] Lu H;Cong J;Liu X;etal . Plant diversity patterns along altitudinal gradients in alpine meadows in the Three River Headwater Region;China. Acta Prataculturae Sinica;2015;24(7): 197-204. [4] Luo L M;Miao Y J;Wu J S;etal . Variation in the biodiversity of montane shrub grassland communities along an altitudinal gradient in a Lhasa River basin valley. Acta Prataculturae Sinica;2014;23(6): 320-326. [5] Arnesen G;Beck P S A;Engelskjøn T. Soil acidity;content of carbonates;and available phosphorus are the soil factors best correlated with alpine vegetation: Evidence from Troms;North Norway. Arctic;Antarctic;and Alpine Research;2007;39(2): 189-199. [6] Wu J;Shen Z;Zhang X. Precipitation and species composition primarily determine the diversity-productivity relationship of alpine grasslands on the Northern Tibetan Plateau. Alpine Botany;2014;124(1): 13-25. [7] Fry E L;Manning P;Allen D G P;etal . Plant functional group composition modifies the effects of precipitation change on grassland ecosystem function. Plos One;2013;8(2): 396-396. [8] Wang Z H;Brown J H;Tang Z Y;etal . Temperature dependence;spatial scale;and tree species diversity in eastern Asia and North America. Proceedings of the National Academy of Sciences;2009;106(32): 13388-13392. [9] Guo Z G;Cheng G D;Wang G X. Plant diversity of alpine Kobresia meadow in the northern region of the Tibetan Plateau. Journal of Glaciology and Geocryology;2004;26(1): 95-100. [10] Melo A;Rangel T;Diniz J. Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography;2009;32: 226-236. [11] Loreau M. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos;2000;91(1): 3-17. [12] Loreau M;Naeem S;Inchausti P;etal . Biodiversity and ecosystem functioning: current knowledge and future challenges. Science;2001;294(5543): 804-808. [13] Baskin C C;Baskin J M. Seeds: Ecology;Biogeography;and Evolution of Dormancy and Germination[M]. San Diego: Academic Press;2001. [14] Adler P B;Hillerislambers J. The influence of climate and species composition on the population dynamics of ten prairie forbs. Ecology;2008;89(11): 3049-3060. [15] Alward R D;Detling J K;Milchunas D G. Grassland vegetation changes and nocturnal global warming. Science;1999;283(5399): 229-231. [16] Engler R;Randin C F;Thuiller W;etal . 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology;2011;17(7): 2330-2341. [17] Dirnböck T;Essl F;Rabitsch W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Global Change Biology;2011;17(2): 990-996. [18] Knapp A K;Fay P A;Blair J M;etal . Rainfall variability;carbon cycling;and plant species diversity in a mesic grassland. Science;2002;298(5601): 2202-2205. [19] Fay P A;Blair J M;Smith M D;etal . Relative effects of precipitation variability and warming on grassland ecosystem function. Biogeosciences Discussions;2011;8: 6859-6900. [20] Zhang L;Wylie B K;Ji L;etal . Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources. Journal of Geophysical Research: Biogeosciences (2005-2012);2011;116(1): 622-635. [21] Wang J B;Zhang D G;Cao G M;etal . Regional characteristics of the alpine meadow degradation succession on the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica;2013;22(2): 1-10. [22] O’Brien E M. Biological relativity to water-energy dynamics. Journal of Biogeography;2006;33(11): 1868-1888. [23] Feng Y;Zhang Y M;Pan B R. Grassland types with environmental relations in middle zone of northern slop of Tianshan Mountains. Arid Land Geography;2006;29(2): 237-242. [24] Guo Z G;Liang T G;Liu X Y;etal . Species diversity of grassland communities in the Aletai region of the northern Xinjiang province. Acta Botanica Boreali-occidentalia Sinica;2003;23(10): 1719-1724. [25] Li L P;Wang Z;Zerbe S;etal . Species richness patterns and water-energy dynamics in the drylands of Northwest China. PloS ONE;2013;8(6): e66450. [26] Li L P;Abdusalih N;Wang S P;etal . Distribution patterns and climatic explanations of species richness of vascular plants in Xinjiang;China. Arid Zone Research;2011;28(1): 25-30. [27] Xu P. Grassland Resources and Use in Xinjiang[M]. Urumchi: Health Science and Technology Publishing House in Xinjiang;1993: 202-204. [28] Bai Y F;Wu J G;Pan Q M;etal . Positive linear relationship between productivity and diversity: evidence from the Eurasian steppe. Journal of Applied Ecology;2007;44: 1023-1034. [29] Ma W;He J S;Yang Y;etal . Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography;2010;19(2): 233-243. [30] Wang S X;Dong X G;Liu L. Natural vegetation diversity differentiation under water and salt gradients in the Oasis of Yanqi Basin;Xinjiang. Journal of Glaciology and Geocryology;2010,(3): 999-1006. [31] Maestre F T;Cortina J. Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proceedings of the Royal Society of London B: Biological Sciences;2004;271(Suppl 5): 331-333. [32] Cavieres L A;Badano E I. Do facilitative interactions increase species richness at the entire community level. Journal of Ecology;2009;97(6): 1181-1191. [33] Wu J S;Zhang X;Shen Z;etal . Species richness and diversity of alpine grasslands on the Northern Tibetan Plateau: Effects of grazing exclusion and growing season precipitation. Journal of Resources and Ecology;2012;3(3): 236-242. [34] Chen L;Li H;Zhang P;etal . Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia;China. Landscape Ecology;2014;30: 1-15. [35] Bai Y F;Li L H;Wang Q B;etal . Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin River Basin;Inner Mongolia. Acta Phytoecologica Sinica;2000;24: 667-673. [36] Tilman D;Wedin D;Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature;1996;379: 718-720. [37] Dai S;Wang X P;Liu C;etal . Relationship between shrub species richness and climate across central Inner Mongolia;China. Acta Scientiarum Naturalium Universitatis Pekinensis;2013;49(4): 689-698. [38] Vonlanthen C M;Kammer P M;Eugster W;etal . Alpine vascular plant species richness: the importance of daily maximum temperature and pH. Plant Ecology;2006;184(1): 13-25. [39] Kreft H;Jetz W. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences;2007;104(14): 5925-5930. [40] Walther G R. Plants in a warmer world. Perspectives in Plant Ecology;Evolution and Systematics;2003;6(3): 169-185. [41] McCain C M;Sanders N J. Metabolic theory and elevational diversity of vertebrate ectotherms. Ecology;2010;91(2): 601-609. [42] Feng J M. Spatial patterns of species diversity of seed plants in China and their climatic explanation. Biodiversity Science;2008;16(5): 470-476. [43] Zhang S B;Chen W Y;Huang J L;etal . Orchid species richness along elevational and environmental gradients in Yunnan;China. PLoS ONE;2015;10(11): e0142621. [44] Xu Y J;Chen Y N;Li W H;etal . Distribution pattern and environmental interpretation of plant species diversity in the mountainous region of Ili River Valley;Xinjiang;China. Chinese Journal of Plant Ecology;2010;34(10): 1142-1154. [45] Wang W;Wang Q;Li S;etal . Distribution and species diversity of plant communities along transect on the Northeastern Tibetan plateau. Biodiversity & Conservation;2006;15(5): 1811-1828. [46] Liu Z;Li Q;Chen D D;etal . Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai-Tibet Plateau. Biodiversity Science;2015;23(4): 451-462. [47] Ohlemuller R;Wilson J B. Vascular plant species richness along latitudinal and altitudinal gradients: a contribution from New Zealand temperate rainforests. Ecology Letters;2000;3(4): 262-266. [48] Nogués-Bravo D;Araújo M B;Romdal T;etal . Scale effects and human impact on the elevational species richness gradients. Nature;2008;453(7192): 216-219. [3] 卢慧,丛静,刘晓,等. 三江源区高寒草甸植物多样性的海拔分布格局. 草业学报;2015;24(7): 197-204. [4] 罗黎鸣,苗彦军,武建双,等. 拉萨河谷山地灌丛草地物种多样性随海拔升高的变化特征. 草业学报;2014,23(6): 320-326. [9] 郭正刚,程国栋,王根绪. 青藏高原北部高海拔地区嵩草草甸植物多样性分析. 冰川冻土;2004;26(1): 95-100. [21] 王建兵,张德罡,曹广民,等. 青藏高原高寒草甸退化演替的分区特征. 草业学报;2013;22(2): 1-10. [23] 冯缨,张元明,潘伯荣. 天山北坡中段草地类型的生态梯度组合格局与环境分析研究. 干旱区地理;2006;29(2): 237-242. [24] 郭正刚,梁天刚,刘兴元,等. 新疆阿勒泰地区草地类型及植物多样性的研究. 西北植物学报;2003;23(10): 1719-1724. [26] 李利平,努尔巴依·阿布都沙力克,王少鹏,等. 新疆野生维管束植物物种丰富度分布格局的水热解释. 干旱区研究;2011;28(1): 25-30. [27] 许鹏.新疆草地资源及其利用[M].乌鲁木齐:新疆科技卫生出版社,1993: 202-204. [30] 王水献,董新光,刘磊. 新疆焉耆盆地绿洲水盐双梯度下天然植被多样性分异特征. 冰川冻土;2010,(5): 999-1006. [35] 白永飞,李凌浩,王其兵,等. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究. 植物生态学报;2000,(6): 667-225. [37] 代爽,王襄平,刘超,等. 内蒙古灌木群落物种丰富度与气候的关系. 北京大学学报:自然科学版;2013;49(4): 689-698. [42] 冯建孟. 中国种子植物物种多样性的大尺度分布格局及其气候解释. 生物多样性;2008;16(5): 470-476. [44] 徐远杰,陈亚宁,李卫红,等. 伊犁河谷山地植物群落物种多样性分布格局及环境解释. 植物生态学报;2010;34(10): 1142-1154. [46] 刘哲,李奇,陈懂懂,等. 青藏高原高寒草甸物种多样性的海拔梯度分布格局及对地上生物量的影响. 生物多样性;2015;23(4): 451-462. |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://119.78.100.147:8080/handle/2SELTVKS/54898 |
Collection | 骨干期刊_草业学报 |
Recommended Citation GB/T 7714 | 刘利利;盛建东;程军回;刘耘华;李瑞霞;赵丹. 新疆不同草地类型植物物种特征与水热因子的关系研究[J],2018,25(5):1. |
APA | 刘利利;盛建东;程军回;刘耘华;李瑞霞;赵丹.(2018).新疆不同草地类型植物物种特征与水热因子的关系研究.,25(5),1. |
MLA | 刘利利;盛建东;程军回;刘耘华;李瑞霞;赵丹."新疆不同草地类型植物物种特征与水热因子的关系研究".25.5(2018):1. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment